Prince and Princess
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1267 Accepted Submission(s): 358
Problem Description
There are n princes and m princesses. Princess can marry any prince. But prince can only marry the princess they DO love.
For all princes,give all the princesses that they love. So, there is a maximum number of pairs of prince and princess that can marry.
Now for each prince, your task is to output all the princesses he can marry. Of course if a prince wants to marry one of those princesses,the maximum number of marriage pairs of the rest princes and princesses cannot change.
For all princes,give all the princesses that they love. So, there is a maximum number of pairs of prince and princess that can marry.
Now for each prince, your task is to output all the princesses he can marry. Of course if a prince wants to marry one of those princesses,the maximum number of marriage pairs of the rest princes and princesses cannot change.
Input
The first line of the input contains an integer T(T<=25) which means the number of test cases.
For each test case, the first line contains two integers n and m (1<=n,m<=500), means the number of prince and princess.
Then n lines for each prince contain the list of the princess he loves. Each line starts with a integer ki(0<=ki<=m), and then ki different integers, ranging from 1 to m denoting the princesses.
For each test case, the first line contains two integers n and m (1<=n,m<=500), means the number of prince and princess.
Then n lines for each prince contain the list of the princess he loves. Each line starts with a integer ki(0<=ki<=m), and then ki different integers, ranging from 1 to m denoting the princesses.
Output
For each test case, first output "Case #x:" in a line, where x indicates the case number between 1 and T.
Then output n lines. For each prince, first print li, the number of different princess he can marry so that the rest princes and princesses can still get the maximum marriage number.
After that print li different integers denoting those princesses,in ascending order.
Then output n lines. For each prince, first print li, the number of different princess he can marry so that the rest princes and princesses can still get the maximum marriage number.
After that print li different integers denoting those princesses,in ascending order.
Sample Input
2
4 4
2 1 2
2 1 2
2 2 3
2 3 4
1 2
2 1 2
Sample Output
Case #1:
2 1 2
2 1 2
1 3
1 4
Case #2:
2 1 2
2 1 2
2 1 2
1 3
1 4
Case #2:
2 1 2
Source
题意:一个王国里有n个王子和m个公主,公主可以跟任何王子结婚,但是王子可以选择和他喜欢的公主结婚,喜欢的公主可以有多个,但是最终只能选择其中一个结婚,公主一样也必须只能和一个王子结婚,现在给出n和m,接下来n行,第i行首先有个数ki,然后k个数,代表第i个王子喜欢的公主编号,接下来输出n行,表示每个王子可以有多少公主可以选择,并从小大输出公主标号,并保证这些选择不会有冲突,且满足最大匹配
分析:首先建立二分图,左列图的点为王子,右列图的点事公主,然后把王子与器喜欢的公主建立单向边然后跑一遍最大匹配,并记录每个公主和哪个王子的匹配策略,然后公主和其结婚的王子建立一条边,之后跑一遍tarjan强连通的算法,最后对每个王子进行遍历,所有和该王子在一个联通块中的公主都是可选对象
程序:
#include"cstdio"
#include"cstring"
#include"cstdlib"
#include"cmath"
#include"string"
#include"map"
#include"cstring"
#include"iostream"
#include"algorithm"
#include"queue"
#include"stack"
#define inf 0x3f3f3f3f
#define M 10009
#define eps 1e-8
#define INT int
#define LL __int64
using namespace std;
struct node
{
int u,v,next;
}edge[];
int cmp(int a,int b)
{
return a<b;
}
int h[M];
int x[M];
int y[M];
int head[M];
int dfn[M];
int belong[M];
int low[M];
int use[M];
int sum[M];
int in[M];
int out[M];
int t,indx,num,m,n;
stack<int>q;
void init()
{
t=;
memset(head,-,sizeof(head));
}
void add(int u,int v)
{
edge[t].u=u;
edge[t].v=v;
edge[t].next=head[u];
head[u]=t++;
}
int finde(int u)
{
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(!use[v])
{
use[v]=;
if(!y[v]||finde(y[v]))
{
use[v]=;
y[v]=u;
x[u]=v;
return ;
}
}
}
return ;
}
void tarjan(int u,int id)
{
dfn[u]=low[u]=++indx;
q.push(u);
use[u]=;
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(!dfn[v])
{
tarjan(v,i);
low[u]=min(low[u],low[v]);
}
else if(use[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
int p;
num++;
do
{
p=q.top();
q.pop();
use[p]=;
belong[p]=num;
sum[num]++; }while(p!=u);
}
}
int match(int nl)
{
memset(x,,sizeof(x));
memset(y,,sizeof(y));
int ans=;
for(int i=;i<=nl;i++)
{
if(!x[i])
{
memset(use,,sizeof(use));
ans+=finde(i);
}
}
return ans;
}
void slove()
{
int cnt=match(n);
int all=m+n-cnt;
for(int i=n+;i<=all;i++)
{
for(int j=;j<=all;j++)
add(i,j+);
}
for(int i=;i<=all;i++)
{
for(int j=m+;j<=all;j++)
{
//if(x[i]==0)
add(i,j+);
}
}
match(all);
for(int i=;i<=all;i++)
{
if(x[i])
add(x[i],i);
}
num=indx=;
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(use,,sizeof(use));
memset(sum,,sizeof(sum));
for(int i=;i<=all;i++)
{
if(!dfn[i])
{
tarjan(i,-);
}
}
for(int u=;u<=n;u++)
{
int fuck=;
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(v>n&&belong[u]==belong[v]&&v<=+m)
h[fuck++]=v-;
}
sort(h,h+fuck,cmp);
printf("%d",fuck);
for(int i=;i<fuck;i++)
printf(" %d",h[i]);
printf("\n");
}
}
int main()
{
int T,kk=;
cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
init();
for(int i=;i<=n;i++)
{
int k,j;
scanf("%d",&k);
while(k--)
{
scanf("%d",&j);
add(i,+j);
}
}
printf("Case #%d:\n",kk++);
slove();
}
}