题目描述
已知二叉树的前序遍历和中序遍历:
PreOrder: GDAFEMHZ
InOrder: ADEFGHMZ
我们如何还原这颗二叉树,并求出他的后序遍历?
我们基于一个事实:中序遍历一定是 { 左子树中的节点集合 },root,{ 右子树中的节点集合 },前序遍历的作用就是找到每颗子树的root位置。
算法1
输入:前序遍历,中序遍历
1、寻找树的root,前序遍历的第一节点G就是root。
2、观察前序遍历GDAFEMHZ,知道了G是root,剩下的节点必然在root的左或右子树中的节点。
3、观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树中的节点,G右侧的HMZ必然是root的右子树中的节点,root不在中序遍历的末尾或开始就说明根节点的两颗子树都不为空。
4、观察左子树ADEF,按照前序遍历的顺序来排序为DAFE,因此左子树的根节点为D,并且A是左子树的左子树中的节点,EF是左子树的右子树中的节点。
5、同样的道理,观察右子树节点HMZ,前序为MHZ,因此右子树的根节点为M,左子节点H,右子节点Z。
观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了:
从而得到PostOrder: AEFDHZMG
改进:
更进一步说,其实,如果仅仅要求写后续遍历,甚至不要专门占用空间保存还原后的树。只需要用一个数组保存将要得到的后序,就能实现:
具体思路如下:
左节点:
startpre=startPre+1,
startend=startPre+i-startIn
startin=startIn,
endin=i-1
右节点:
startpre=i-startIn+startPre+1,
startend=endPre
startin=i+1,
endin=endIn
具体实现代码如下:
public class ReConstructBinaryTree { //Definition for binary tree public class Solution { } //前序遍历{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6} } return root; } |