scipy习题答案(仅供参考)

时间:2022-07-11 07:03:17

Exercise 10.1: Least squares
Generate matrix ∈ Rm×with m > n. Also generate some vector ∈ Rm. Now find = arg minAx − b2.
Print the norm of the residual.

import numpy as np
import scipy as sp
m = 20
n = 15
A = np.random.random((m,n))
b = np.random.random((m,))
x, residual, rank, s = sp.linalg.lstsq(A,b)
b1 = A.dot(x)
print(sp.linalg.norm(b - b1))
运行结果:
0.3462921048521962


Exercise 10.2: Optimization
Find the maximum of the function    :f(x) = sin2(− 2)ex2

from scipy.optimize import fmin
def func(x):
    return -(np.sin(x-2))**2*(np.exp(-x**2))

opt = fmin(func,0)
print(-f(opt)[0])
运行结果:
Optimization terminated successfully.
         Current function value: -0.911685
         Iterations: 20
         Function evaluations: 40
0.9116854117069156


Exercise 10.3: Pairwise distances
Let be a matrix with rows and columns. How can you compute the pairwise distances between every two rows?
As an example application, consider cities, and we are given their coordinates in two columns. Now we want a nice table that tells us for each two cities, how far they are apart.
Again, make sure you make use of Scipy’s functionality instead of writing your own routine.

n = 5
m = 3
A = np.random.rand(n,m)
X = scipy.spatial.distance.pdist(A)  
Y = scipy.spatial.distance.squareform(X)  
print(Y)
运行结果:
[[0.         1.03161295 0.79745052 0.54036634 0.49914287]
 [1.03161295 0.         0.89030578 1.18083032 0.67161284]
 [0.79745052 0.89030578 0.         0.84625376 0.9042936 ]
 [0.54036634 1.18083032 0.84625376 0.         0.69062377]
 [0.49914287 0.67161284 0.9042936  0.69062377 0.        ]]