Billboard
Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 16023 Accepted Submission(s): 6770
On September 1, the billboard was empty. One by one, the announcements started being put on the billboard.
Each announcement is a stripe of paper of unit height. More specifically, the i-th announcement is a rectangle of size 1 * wi.
When someone puts a new announcement on the billboard, she would always choose the topmost possible position for the announcement. Among all possible topmost positions she would always choose the leftmost one.
If there is no valid location for a new announcement, it is not put on the billboard (that's why some programming contests have no participants from this university).
Given the sizes of the billboard and the announcements, your task is to find the numbers of rows in which the announcements are placed.
The first line of the input file contains three integer numbers, h, w, and n (1 <= h,w <= 10^9; 1 <= n <= 200,000) - the dimensions of the billboard and the number of announcements.
Each of the next n lines contains an integer number wi (1 <= wi <= 10^9) - the width of i-th announcement.
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAX 200010
using namespace std;
int Max[MAX<<2];
void pushup(int o)
{
Max[o]=max(Max[o<<1],Max[o<<1|1]);
}
void gettree(int o,int l,int r,int w)
{
Max[o]=w;//每个初值都设为行长,然后根据输入的广告的长度相应的缩短
if(l==r)
return ;
int mid=(l+r)>>1;
gettree(o<<1,l,mid,w);
gettree(o<<1|1,mid+1,r,w);
pushup(o);//维护区间最大值
}
int find(int o,int l,int r,int v)
{
if(l==r)
{
Max[o]-=v;
return l;//如果本行可以放下这个长度的广告 就输出当前所在的行数l
} //因为如果第一行不可以,下边的回溯会改变l的值
int mid=(l+r)>>1;
int ans;
if(Max[o<<1]>=v)
ans=find(o<<1,l,mid,v);
else
ans=find(o<<1|1,mid+1,r,v);
pushup(o);
return ans;
}
int main()
{
int h,n,i,j,a,w;
while(scanf("%d%d%d",&h,&w,&n)!=EOF)
{
int x=min(h,n);//建树时行数应当是刚好,如果取最大值,那么不管怎么放都可以放完
gettree(1,1,x,w);
while(n--)
{
scanf("%d",&a);
if(Max[1]<a)//Max[1]表示整棵树上的最大值
printf("-1\n");
else
printf("%d\n",find(1,1,x,a));
}
}
return 0;
}