xv6/bootasm.S
#include "asm.h"
#include "memlayout.h"
#include "mmu.h" # Start the first CPU: switch to -bit protected mode, jump into C.
# The BIOS loads this code from the first sector of the hard disk into
# memory at physical address 0x7c00 and starts executing in real mode
# with %cs= %ip=7c00. .code16 # Assemble for -bit mode
.globl start
start:
cli # BIOS enabled interrupts; disable # Zero data segment registers DS, ES, and SS.
xorw %ax,%ax # Set %ax to zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment # Physical address line A20 is tied to zero so that the first PCs
# with MB would run software that assumed MB. Undo that.
seta20.:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20. movb $0xd1,%al # 0xd1 -> port 0x64
outb %al,$0x64 seta20.:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20. movb $0xdf,%al # 0xdf -> port 0x60
outb %al,$0x60 # Switch from real to protected mode. Use a bootstrap GDT that makes
# virtual addresses map directly to physical addresses so that the
# effective memory map doesn’t change during the transition.
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE, %eax
movl %eax, %cr0 # Complete transition to -bit protected mode by using long jmp
# to reload %cs and %eip. The segment descriptors are set up with no
# translation, so that the mapping is still the identity mapping.
ljmp $(SEG_KCODE<<), $start32 .code32 # Tell assembler to generate -bit code now.
start32:
# Set up the protected-mode data segment registers
movw $(SEG_KDATA<<), %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %ss # -> SS: Stack Segment
movw $, %ax # Zero segments not ready for use
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS # Set up the stack pointer and call into C.
movl $start, %esp
call bootmain # If bootmain returns (it shouldn’t), trigger a Bochs
# breakpoint if running under Bochs, then loop.
movw $0x8a00, %ax # 0x8a00 -> port 0x8a00
movw %ax, %dx
outw %ax, %dx
movw $0x8ae0, %ax # 0x8ae0 -> port 0x8a00
outw %ax, %dx
spin:
jmp spin # Bootstrap GDT
.p2align # force byte alignment
gdt:
SEG_NULLASM # null seg
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg
SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg gdtdesc:
.word (gdtdesc - gdt - ) # sizeof(gdt) -
.long gdt # address gdt
xv6/bootmain.c
// Boot loader.
//
// Part of the boot sector, along with bootasm.S, which calls bootmain().
// bootasm.S has put the processor into protected 32-bit mode.
// bootmain() loads an ELF kernel image from the disk starting at
// sector 1 and then jumps to the kernel entry routine. #include "types.h"
#include "elf.h"
#include "x86.h"
#include "memlayout.h" #define SECTSIZE 512 void readseg(uchar*, uint, uint); void
bootmain(void)
{
struct elfhdr *elf;
struct proghdr *ph, *eph;
void (*entry)(void);
uchar* pa; elf = (struct elfhdr*)0x10000; // scratch space // Read 1st page off disk
readseg((uchar*)elf, , ); // Is this an ELF executable?
if(elf->magic != ELF_MAGIC)
return; // let bootasm.S handle error // Load each program segment (ignores ph flags).
ph = (struct proghdr*)((uchar*)elf + elf->phoff);
eph = ph + elf->phnum;
for(; ph < eph; ph++){
pa = (uchar*)ph->paddr;
readseg(pa, ph->filesz, ph->off);
if(ph->memsz > ph->filesz)
stosb(pa + ph->filesz, , ph->memsz - ph->filesz);
} // Call the entry point from the ELF header.
// Does not return!
entry = (void(*)(void))(elf->entry);
entry();
} void
waitdisk(void)
{
// Wait for disk ready.
while((inb(0x1F7) & 0xC0) != 0x40)
;
} // Read a single sector at offset into dst.
void
readsect(void *dst, uint offset)
{
// Issue command.
waitdisk();
outb(0x1F2, ); // count = 1
outb(0x1F3, offset);
outb(0x1F4, offset >> );
outb(0x1F5, offset >> );
outb(0x1F6, (offset >> ) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors // Read data.
waitdisk();
insl(0x1F0, dst, SECTSIZE/);
} // Read ’count’ bytes at ’offset’ from kernel into physical address ’pa’.
// Might copy more than asked.
void
readseg(uchar* pa, uint count, uint offset)
{
uchar* epa; epa = pa + count; // Round down to sector boundary.
pa -= offset % SECTSIZE; // Translate from bytes to sectors; kernel starts at sector 1.
offset = (offset / SECTSIZE) + ; // If this is too slow, we could read lots of sectors at a time.
// We’d write more to memory than asked, but it doesn’t matter --
// we load in increasing order.
for(; pa < epa; pa += SECTSIZE, offset++)
readsect(pa, offset);
}