Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 27793 | Accepted: 7885 | Special Judge |
Description
1. Empty sequence is a regular sequence.
2. If S is a
regular sequence, then (S) and [S] are both regular sequences.
3. If A and B
are regular sequences, then AB is a regular sequence.
For example, all
of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following
character sequences are not:
(, [, ), )(, ([)], ([(]
Some
sequence of characters '(', ')', '[', and ']' is given. You are to find the
shortest possible regular brackets sequence, that contains the given character
sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence
of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ...
< in = m, that aj = bij for all 1 = j = n.
Input
(characters '(', ')', '[' and ']') that are situated on a single line without
any other characters among them.
Output
some regular brackets sequence that has the minimal possible length and contains
the given sequence as a subsequence.
Sample Input
([(]
Sample Output
()[()]
Source
#include<stdio.h>
#include<string.h>
char str[330];
int a[330][330],b[330],dp[330][330];
void print(int l,int r)
{
if(l>=r)
return;
if(a[l][r]==-1)
{
print(l+1,r);
}
if(a[l][r]>0)
{
b[l]=1;
b[a[l][r]]=1;
print(l+1,a[l][r]-1);
print(a[l][r],r);
}
}
int main()
{
while(gets(str+1))
{
int i,j,k;
memset(dp,0,sizeof(dp));
memset(a,-1,sizeof(a));
memset(b,0,sizeof(b));
int len=strlen(str+1);
for(i=1;i<=len;i++)
{
dp[i][i]=1;
}
for(i=len-1;i>=1;i--)
{
for(j=i+1;j<=len;j++)
{
dp[i][j]=dp[i+1][j]+1;
//a[i][j]=-1;
for(k=i+1;k<=j;k++)
{
if((str[i]=='('&&str[k]==')')||(str[i]=='['&&str[k]==']'))
{
if(dp[i][j]>dp[i+1][k-1]+dp[k][j]-1)
{
dp[i][j]=dp[i+1][k-1]+dp[k][j]-1;
a[i][j]=k;
// b[i]=1;
// b[a[i][j]]=1;
}
}
}
}
}
print(1,len);
for(i=1;i<=len;i++)
{
if(b[i]==1)
{
printf("%c",str[i]);
}
else
if(str[i]=='('||str[i]==')')
printf("()");
else
printf("[]");
}
printf("\n");
}
}