poj 1845 数论综合

时间:2022-09-23 05:53:13

题意:求A^B的所有因数的和 mod 9901

sol:一开始毫无思路,因为很多定理都不知道-_-||

1. 整数的唯一分解定理:

任意正整数都有且只有一种方式写出其素因子的乘积表达式。

A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

2. 约数和公式:
对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

 

熟悉了公式定理就好办了。

首先求出p[i]、k[i]

然后就有

A=p1^n1*p2^n2*......*pk^nk

A^B=(p1^(B*n1))*(p2^(b*n2))*......*(pk^(b*nk))

然后求出S即可。

 注意:一开始我用等比数列求和公式求S,还用了pow_mod。其实这样不行。

比如数据59407 1,

59407 mod 9901=1,最终得出的结果成了0

模运算也不是随便用的,还得按公式来= =

Reference:http://blog.csdn.net/lyy289065406/article/details/6648539

 #include "iostream"
#include "cstdio"
using namespace std;
#define P 9901
#define LL __int64
LL n[],p[]; //A=**(p[i]^n[i])
LL k,A,B; LL pow_mod(LL p, LL k,int mod) //(p^k)%mod
{
LL ans = ;
while(k) {
if (k & ) ans = ans * p % mod;
p = (LL)p*p % mod;
k >>= ;
}
return ans;
} void divide()
{
k=;
/*常规做法:分解整数A (A为非质数)*/
for(int i=; i*i<=A;) //根号法+递归法
{
if(A%i==)
{
p[k]=i;
n[k]=;
while(!(A%i))
{
n[k]++;
A/=i;
}
k++;
}
if(i==) //奇偶法
i++;
else
i+=;
}
/*特殊判定:分解整数A (A为质数)*/
if(A!=)
{
p[k]=A;
n[k++]=;
}
k--;
} LL calc(LL p,LL n) //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod
{ //奇数二分式 (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
if(n==) //偶数二分式 (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2)
return ;
if(n%) //n为奇数,
return (calc(p,n/)*(+pow_mod(p,n/+,P)))%P;
else //n为偶数
return (calc(p,n/-)*(+pow_mod(p,n/+,P))+pow_mod(p,n/,P))%P;
} int main()
{
//freopen("in.txt","r",stdin);
while (cin>>A>>B)
{
divide();
LL sum=;
for (LL i=;i<=k;i++)
{
LL tm=calc(p[i],B*n[i]);
sum=(sum*tm)%P;
}
cout<<sum<<endl;
}
return ;
}