感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了...
还是欧拉扩展定理
于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂。因为一个数最多求log次phi就变成1,所以复杂度为O(logp*sqrt(p)),这题线性筛是比直接求要慢的...
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
int T,x;
int p[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline int phi(int x)
{
int ans=x;
for(int i=;i*i<=x;i++)
if(!(x%i))
{
ans=ans/i*(i-);
while(!(x%i))x/=i;
}
if(x>)ans=ans/x*(x-);
return ans;
}
inline int power(int a,int b,int mod)
{
if(!a)return ;int ans=;
for(;b;b>>=,a=1ll*a*a%mod)
if(b&)ans=1ll*ans*a%mod;
return ans;
}
int solve(int mod)
{
if(mod==)return ;int tmp;
return power(,solve(tmp=phi(mod))+tmp,mod);
}
int main()
{
read(T);
while(T--)read(x),printf("%d\n",solve(x));
return ;
}