系统的学习一遍图论!从这篇博客开始!
先介绍一些概念。
无向图:
G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路。
如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路。
具有欧拉回路的无向图G称为欧拉图。
有向图:
D为基图连通的有向图,则称经过D的每一条边并且仅一次的路径为有向欧拉通路。
如果该通路是回路,则称为有向欧拉回路。
具有有向欧拉回路的有向图D称为有向欧拉图。
无向图判断欧拉通路:G为连通图,且仅有两个奇度的节点或者无奇度节点。
如果有两个奇度的点,那么这两点必定为欧拉通路的起点和终点。
如果没有奇度的节点,那么该图一定有欧拉回路。
有向图判断欧拉通路:D的基图连通,并且所有节点的出度和入度相同,那么该图存在有向欧拉回路。
如果仅有两个节点的出度和入度之差为1和-1,那么该图一定存在欧拉通路,并且一定以入度出度之差为-1的点为起点,入度出度之差为1的点为终点。
/************************************************************以上概念******************************************************************/
接下来介绍这道题。
题意就是能否从一个点出发,经过所有的边,回到节点0。
思路:就是判断一下,如果起点就是0,那么就是求是否存在欧拉回路。
如果起点不是0,那么就是求是否存在欧拉通路,并且欧拉通路的起点终点为0和输入的起点。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <stack>
#include <map>
#include <iomanip>
#define PI acos(-1.0)
#define Max 2505
#define inf 1<<28
#define LL(x) ( x << 1 )
#define RR(x) ( x << 1 | 1 )
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
#define mp(a,b) make_pair(a,b)
#define PII pair<int,int>
using namespace std; inline void RD(int &ret) {
char c;
do {
c = getchar();
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
}
inline void OT(int a){
if(a >= 10)OT(a / 10) ;
putchar(a % 10 + '0') ;
}
#define N 1111
char in[111] ;
int degree[N] ;
int main() {
while(cin >> in){
if(in[0] == 'E')break ;
mem(degree , 0) ;
int n , m ;
cin >> n >> m ;
getchar() ;
int sum = 0 ;
for (int i = 0 ; i < m ;i ++ ){
int now ;
gets(in) ;
int l = strlen(in) ;
if(!l)continue ;
int num = 0 ;
for (int j = 0 ;j < l ;j ++ ){
if(in[j] == ' '){
degree[i] ++ ;
degree[num] ++ ;
sum ++ ;
num = 0 ;
}
else {
num = num * 10 + (in[j] - '0') ;
}
}
if(num){
degree[i] ++ ;
degree[num] ++ ;
sum ++ ;
}
}
cin >> in ;
int odd = 0 ;
int even = 0 ;
for (int i = 0 ; i < m ; i ++ ){
if(degree[i] & 1)odd ++ ;
else even ++ ;
}
if(!odd){
if(n == 0){
printf("YES %d\n",sum) ;
}
else {
puts("NO") ;
}
}
else {
if(odd == 2){
if((degree[n] & 1) && (degree[0] & 1) && (n != 0)){
printf("YES %d\n" ,sum) ;
}
else {
puts("NO") ;
}
}else {
puts("NO") ;
}
}
}
return 0 ;
}