[Linux][Hadoop] 运行WordCount例子

时间:2022-10-15 05:09:06

紧接上篇,完成Hadoop的安装并跑起来之后,是该运行相关例子的时候了,而最简单最直接的例子就是HelloWorld式的WordCount例子。

 

参照博客进行运行:http://xiejianglei163.blog.163.com/blog/static/1247276201443152533684/

 

首先创建一个文件夹,并创建两个文件,目录随意,为以下文件结构:

examples

--file1.txt

--file2.txt

文件内容随意填写,我是从新闻copy下来的一段英文:

执行以下命令:

hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$ ./bin/hadoop fs -mkdir /data    #在hadoop中创建/data文件夹,该文件夹用来存放输入数据,这个文件不是Linux的根目录下的文件,而是hadoop下的文件夹
hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$ ./bin/hadoop fs -put -f ./data_input/* /data #将前面生成的两个 文件拷贝至/data下

[Linux][Hadoop] 运行WordCount例子

 

执行WordCount命令,并查看结果:

hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$ ./bin/hadoop jar ./share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.4.1-sources.jar org.apache.hadoop.examples.WordCount /data /output
14/07/22 22:34:25 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/07/22 22:34:27 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/07/22 22:34:29 INFO input.FileInputFormat: Total input paths to process : 2
14/07/22 22:34:29 INFO mapreduce.JobSubmitter: number of splits:2
14/07/22 22:34:30 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1406038146260_0001
14/07/22 22:34:32 INFO impl.YarnClientImpl: Submitted application application_1406038146260_0001
14/07/22 22:34:32 INFO mapreduce.Job: The url to track the job: http://ubuntu:8088/proxy/application_1406038146260_0001/
14/07/22 22:34:32 INFO mapreduce.Job: Running job: job_1406038146260_0001
14/07/22 22:34:58 INFO mapreduce.Job: Job job_1406038146260_0001 running in uber mode : false
14/07/22 22:34:58 INFO mapreduce.Job: map 0% reduce 0%
14/07/22 22:35:34 INFO mapreduce.Job: map 100% reduce 0%
14/07/22 22:35:52 INFO mapreduce.Job: map 100% reduce 100%
14/07/22 22:35:52 INFO mapreduce.Job: Job job_1406038146260_0001 completed successfully
14/07/22 22:35:53 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=2521
FILE: Number of bytes written=283699
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=2280
HDFS: Number of bytes written=1710
HDFS: Number of read operations=9
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=71182
Total time spent by all reduces in occupied slots (ms)=13937
Total time spent by all map tasks (ms)=71182
Total time spent by all reduce tasks (ms)=13937
Total vcore-seconds taken by all map tasks=71182
Total vcore-seconds taken by all reduce tasks=13937
Total megabyte-seconds taken by all map tasks=72890368
Total megabyte-seconds taken by all reduce tasks=14271488
Map-Reduce Framework
Map input records=29
Map output records=274
Map output bytes=2814
Map output materialized bytes=2527
Input split bytes=202
Combine input records=274
Combine output records=195
Reduce input groups=190
Reduce shuffle bytes=2527
Reduce input records=195
Reduce output records=190
Spilled Records=390
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=847
CPU time spent (ms)=6410
Physical memory (bytes) snapshot=426119168
Virtual memory (bytes) snapshot=1953292288
Total committed heap usage (bytes)=256843776
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=2078
File Output Format Counters
Bytes Written=1710
hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$

上面的日志显示出了wordCount的详细情况,然后执行查看结果命令查看统计结果:

hadoop@ubuntu:/usr/local/gz/hadoop-2.4.1$ ./bin/hadoop fs -cat /output/part-r-00000
14/07/22 22:38:05 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
"as 1
"atrocious," 1
- 1
10-day 1
13 1
18 1
20, 1
2006. 1
3,000 1
432 1
65 1
7.4.52 1
:help 2
:help<Enter> 1
:q<Enter> 1
<F1> 1
Already, 1
Ban 1
Benjamin 1

后面省略了很多统计数据,wordCount统计结果完成。