昨天在自己的电脑上配置了hadoop,也运行了第一个MapReduce程序WordCount程序。但是对mapreduce的编程还很不清楚,在网上转了一段对wordcount的解释,转载学习下。
Wordcount的输入是文件夹,文件夹内是多个文件,内容是以空格作分隔符的单词序列,输出为单词,以及他们的数量。
首先,在mapreduce程序中,程序会按照setInputFormat中设置的方法为将输入切分成一个个InputSplit。在Map过程中,程序会为每一个InputSplit调用map函数,这里即以空格作分隔符将单词切开。并以单词作为key,1作为value。需要特别指出的是,mapreduce的<key,value>无论是key还是value都是mapreduce预先定义好的格式,因此在wordcount这个程序中,我们要把String转换成text格式,int转换为IntWritable格式。如下:
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
再做
word.set(tokenizer.nextToken());
将这些<key,value>对作为Map的结果传递下去
output.collect(word, one);
在Reduce过程中,程序会对每组<key,list of values>调用reduce函数,在我们这个程序中,只需让value相加即可以。最后调用output.collect输出Reduce结果。
以下是程序内容及注释:
package com.felix;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
/**
*
* 描述:WordCount explains by Felix
* @author Hadoop Dev Group
*/
public class WordCount
{
/**
* MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情)
* Mapper接口:
* WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。
* Reporter 则可用于报告整个应用的运行进度,本例中未使用。
*
*/
public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> //设定了map函数输入的形式为longwritable<key>text<value>输出地形式为text<key>intwritable<value>
{
/**
* LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,
* 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。
*/
private final static IntWritable one = new IntWritable(1); //定义一个intwritable型的常量,用来说明出现过一次
private Text word = new Text(); //定义一个text型的变量,用来保存单词
/**
* Mapper接口中的map方法:
* void map(K1 key, V1 value, OutputCollector<K2,V2> output, Reporter reporter)
* 映射一个单个的输入k/v对到一个中间的k/v对
* 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。
* OutputCollector接口:收集Mapper和Reducer输出的<k,v>对。
* OutputCollector接口的collect(k, v)方法:增加一个(k,v)对到output
*/
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter) //map中的参变量说明map输入时的keyvalue对的形式,以及map输出和reduce接收的keyvalue数据类型
throws IOException
{
String line = value.toString(); //将输入中的一行保存到line中
StringTokenizer tokenizer = new StringTokenizer(line); //将一行保存到准备切词的工具中
while (tokenizer.hasMoreTokens()) //判断是否到一行的结束
{
word.set(tokenizer.nextToken()); //设定key即word的值为从每一行切下来的单词
output.collect(word, one); //设定map函数输出的keyvalue对
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> //设定reduce函数中输入对的数据类型是text和intwritable,输出对的数据类型是text和intwritable
{
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter) //设定reduce函数中输入对的数据类型是text和intwritable,输出对的数据类型是text和intwritable
throws IOException
{
int sum = 0;
while (values.hasNext()) //计算同一个key下,所有value的总和
{
sum += values.next().get(); //获取下一个value的值
}
output.collect(key, new IntWritable(sum)); //收集reduce输出结果
}
}
public static void main(String[] args) throws Exception
{
/**
* JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作
* 构造方法:JobConf()、JobConf(Class exampleClass)、JobConf(Configuration conf)等
*/
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount"); //设置一个用户定义的job名称
conf.setOutputKeyClass(Text.class); //为job的输出数据设置Key类
conf.setOutputValueClass(IntWritable.class); //为job输出设置value类
conf.setMapperClass(Map.class); //为job设置Mapper类
conf.setCombinerClass(Reduce.class); //为job设置Combiner类
conf.setReducerClass(Reduce.class); //为job设置Reduce类
conf.setInputFormat(TextInputFormat.class); //为map-reduce任务设置InputFormat实现类
conf.setOutputFormat(TextOutputFormat.class); //为map-reduce任务设置OutputFormat实现类
/**
* InputFormat描述map-reduce中对job的输入定义
* setInputPaths():为map-reduce job设置路径数组作为输入列表
* setInputPath():为map-reduce job设置路径数组作为输出列表
*/
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf); //运行一个job
}
}