01 安装 Visual studio 2017.
不具备安装这个的话,也可安装,Microsoft Visual Studio Express (or equivalent)
02 创建 C# 的 控制台程序
03 添加 Accord 库
03 让机器学习『异或』的逻辑
不需要在代码里写出来异或的程序逻辑,告诉机器 异或的输入和输出(其实就是一个监督学习,训练的过程),机器就自己学习会了异或逻辑。
上代码:
using System;
using Accord.Controls;
using Accord.MachineLearning.VectorMachines;
using Accord.MachineLearning.VectorMachines.Learning;
using Accord.Math;
using Accord.Statistics.Kernels;
using Accord.Math.Optimization.Losses;
using Accord.Statistics; namespace SampleApplication1
{
class Program
{
[MTAThread]
static void Main(string[] args)
{
double[][] inputs =
{
/* 1.*/ new double[] { , },
/* 2.*/ new double[] { , },
/* 3.*/ new double[] { , },
/* 4.*/ new double[] { , },
}; int[] outputs =
{
/* 1. 0 xor 0 = 0: */ ,
/* 2. 1 xor 0 = 1: */ ,
/* 3. 0 xor 1 = 1: */ ,
/* 4. 1 xor 1 = 0: */ ,
}; // Create the learning algorithm with the chosen kernel
var smo = new SequentialMinimalOptimization<Gaussian>()
{
Complexity = // Create a hard-margin SVM
}; // Use the algorithm to learn the svm
var svm = smo.Learn(inputs, outputs); // Compute the machine's answers for the given inputs
bool[] prediction = svm.Decide(inputs); // Compute the classification error between the expected
// values and the values actually predicted by the machine:
double error = new AccuracyLoss(outputs).Loss(prediction); Console.WriteLine("Error: " + error); // Show results on screen
ScatterplotBox.Show("Training data", inputs, outputs);
ScatterplotBox.Show("SVM results", inputs, prediction.ToZeroOne()); Console.ReadKey();
}
}
}
04 运行搞定
本文的源代码:
链接:https://pan.baidu.com/s/1gfrQyPX
密码: 关注微信输入关键字: 异或