数理统计(二)——Python中的概率分布API

时间:2022-08-16 04:57:55

数理统计(二)——Python中的概率分布API

  iwehdio的博客园:https://www.cnblogs.com/iwehdio/

  数理统计中进行假设检验需要查一些分布的上分位数表。在scipy的stats统计模块中,有关于数理统计中一些概率分布的API,可求得分布的概率分布函数、概率密度函数和上分位数等。选常用的正态分布、t分布、F分布、卡方分布和伽马分布做使用介绍。

  导入模块,并说明各个模块对应的分布:

from scipy import stats

# 正态分布
stats.norm # t分布
stats.t # F分布
stats.f # 卡方分布
stats.chi2 # 伽马分布
stats.gamma

  

1、正态分布

  正态分布的模块名为stats.norm。在stats模块中,都是对对应分布的模块取方法来实现的,常用的三个方法如下:

功能 方法 表达式
求概率分布函数 F(x) .cdf(x;L,S) 数理统计(二)——Python中的概率分布API
求概率密度函数 f(x) .pdf(x;L,S) 数理统计(二)——Python中的概率分布API
求置信度为α的上分位数 Z(α) .isf(α;L,S) 数理统计(二)——Python中的概率分布API

  其中x为自变量的值,α为置信度,L和S为分布参数,默认L=0,S=1。

  对于正态分布,可以求出其在x=0.5,α=0.05,均值为2,方差为3下的概率分布、概率密度和上分位数。

# 概率分布函数
>>> stats.norm.cdf(0.5,2,3)
0.3085375387259869 # 概率密度函数
>>> stats.norm.pdf(0.5,2,3)
0.11735510892143318 # 上分位数
>>> stats.norm.isf(0.05,2,3)
6.934560880854418

  画概率分布曲线、概率密度曲线:

# 概率分布曲线
x=np.linspace(0,8,2000)
y=stats.norm.cdf(x,2,3)
plt.plot(x,y)
plt.title('Norm_F') # 概率密度曲线
x=np.linspace(-6,10,2000)
y=stats.norm.pdf(x,2,3)
plt.plot(x,y)
plt.title('Norm_f')

  正态分布的概率分布曲线:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXiU5b3G8e8Pwr5DwhrCjogKApFFXEpdDlZcWq0KSkUF1IK1Vttqj8e2dq89PbZ1pYAgClTciora2mrdIQn7KjsJayCEJSFk+50/Mtg0BjOBCe/M5P5cVy7zzjyZ3GC4eXnmfZ/H3B0REYl9dYIOICIikaFCFxGJEyp0EZE4oUIXEYkTKnQRkTihQhcRiRMqdBGROKFCFxGJEyp0iWlmtsXMdptZk3KPjTez9wKMhZm5meWZ2eHQR26QeaR2UKFLPEgA7j6ZF7Aykf7z0N/dm4Y+Wkb4tUW+QIUu8eAR4D4z+0Jpmtm5ZpZmZgdC/z233HPvmdkvzOwjIB/oHnrs52b2cejM+jUza2Nmz5vZwdBrdD1lvzKRalChSzxIB94D7iv/oJm1Bt4A/gi0AX4PvGFmbcoNGwtMBJoBW0OP3RB6vBPQA/gEeAZoDawBflxDvw6Rk6JCl3jxEHCXmSWVe+xyYL27z3L3YnefA6wFrig3Zoa7rwo9XxR67Bl33+juB4A3gY3u/o67FwPzgAFhZlpsZrmhjz+e3C9PpGoJQQcQiQR3X2lmrwP3U3YWDdCRf591H7OVsjPvYzIrebnd5T4/Uslx0zBjDXT3DWGOFTlpOkOXePJjYAL/LuwdQJcKY1KA7eWOtX60xA0VusSN0NnwX4DvhB5aAPQ2szFmlmBm1wN9gdeDyihSk1ToEm8eBpoAuPs+YBRwL7AP+AEwyt33BhdPpOaYdiwSEYkPOkMXEYkTuspF5ASY2fmUXdL4Be4e7lUwIhGlKRcRkTgR2Bl6YmKid+3aNahvLyISkzIyMva6e1Jlz1VZ6GY2nbIrBfa4+5mVPG/AH4CvUbYexjh3X1zV63bt2pX09PSqhomISDlmVvFmuc+F86boDGDklzx/GdAr9DEReLI64UREJDKqLHR3fx/I+ZIhVwHPeplPgZZm1iFSAUVEJDyRuGyxE/+5HkYW/7lWxufMbKKZpZtZenZ2dgS+tYiIHBOJQrdKHqv00hl3n+Luqe6empRU6Zy+iIicoEgUehbQudxxMmWLIomIyCkUiUKfD3wrtIXXUOCAu++MwOuKiEg1hHPZ4hzgK0CimWVRtkRpPQB3f4qyFe2+Bmyg7LLFW2oqrIiIHF+Vhe7uo6t43oFJEUskIhJH3J2cvEK27Mtj6758tuXkc1GfdpyV3CLi30truYiInCR3Z39+EZv35rFlbx5b9+WxeV8+W/bmsWVfHocKij8fawaJTRuo0EVEguTuZB8+yvrdh1m/+xCf7Qn9d/dhDhwp+nxcHYNOrRrRtU0Tvp7Sia5tmtA1sTFd2jQhuVUjGiTUrZF8KnQRkUrkFxazZuchVu84wNpdh1i/+zCf7TlEbv6/i7tFo3r0bteUr53VgR5JTeiW2ISuiU3o3Kox9RNO/erkKnQRqfVy8wtZteMgq3YcYNWOg6zcfoDNe/MoDd1R07xhAr3bNeOyM9vTq20zerdrRu92TUlq1oCy5ayigwpdRGqVgqISVu04wOKtuSzJ3M+yzANszz3y+fMdWzSkb8cWjOrXkTM6NueMTi3o2KJhVBX38ajQRSRuuTuZOUdYkrmfJdtyWbJtP6t3HqSopOzUu3PrRpyd0pKxw7qUlXfHFrRuUj/g1CdOhS4iccPdWb/nMAs37ePTzTks3JTD3sNHAWhcvy79klsw/vzuDExpxdmdW5LUrEHAiSNLhS4iMau01Fm3+xALN+1j4eYcFm3OYV9eIQAdWjTkvJ5tSO3amoEprejdrikJdeN7G2UVuojElD0HC3h//V4+WJ/Nh+v3fl7gnVo24sLTkhjarQ1Du7ehc+tGMTHvHUkqdBGJagVFJaRv2c/767N5/7Ns1u46BEBi0/qc3yuR4T0TQwXeOOCkwVOhi0jUyT50lH+s2c07a3bz4Ya9FBSVUq+ukdqlNT8c2YfzeyXSt0Nz6tSpXWfgVVGhi0jg3J0New7zt9VlJb40Mxf3smmU61M7c+FpSQzp1oYmDVRZX0a/OyISCHdnSWYuC5bv5O9rdrN1Xz4A/ZJb8L2Le3Nx33b0ad+s1s2DnwwVuoicMu7O8qwDvLFiJ28s38n23CPUr1uHc3u2YeIF3bmoTzvat2gYdMyYpUIXkRrl7qzacZDXl+/kjRU7yMw5Qr26xvm9krj30rIz8eYN6wUdMy6o0EWkRuzIPcIrS7bz8uIsNmbnkVDHGN4zkbu+2ov/6tueFo1V4pGmQheRiMk7WsxbK3fx8pIsPt64D3cY3LU1t53XncvObE+rGL6tPhao0EXkpLg7n27K4cWMLN5cuZP8whJSWjfm7ot68Y0ByaS00fXhp0pYhW5mI4E/AHWBqe7+6wrPdwGmA0lADnCTu2dFOKuIRJGcvEJeyshizqJtbNqbR7MGCVzZvyPXDEomtUsrXZ0SgHA2ia4LPA5cAmQBaWY2391Xlxv2O+BZd59pZl8FfgWMrYnAIhIcd2fR5hxmL9rGmyt2UVhSSmqXVkwa0ZPL+3WgYb2a2YlHwhPOGfpgYIO7bwIws7nAVUD5Qu8L3BP6/F3g1UiGFJFgHSooYl56FrMXbWPDnsM0a5jAmCEpjB6cwmntmwUdT0LCKfROQGa54yxgSIUxy4BrKJuW+TrQzMzauPu+8oPMbCIwESAlJeVEM4vIKbJlbx4zPt7CvPRM8gpLOLtzS357bT+u6NeRRvV1Nh5twin0yibCvMLxfcBjZjYOeB/YDhR/4YvcpwBTAFJTUyu+hohEAXfnk437mP7RZv6xdg8JdYwr+nXkluHdamSneomccAo9C+hc7jgZ2FF+gLvvAL4BYGZNgWvc/UCkQopIzTtaXMJfl+xg+kebWbvrEG2a1OeuET25aWgX2jbX3ZuxIJxCTwN6mVk3ys68bwDGlB9gZolAjruXAg9QdsWLiMSAw0eLmb1wK1M/2MyeQ0c5vUNzHrm2H1f076g3OWNMlYXu7sVmNhl4m7LLFqe7+yozexhId/f5wFeAX5mZUzblMqkGM4tIBOw7fJQZH29h5sdbOFhQzPCebfj9dWczvGcbXXIYo8w9mKns1NRUT09PD+R7i9RmWfvzmfrBZuambeNocSkjz2jPHRf2oH/nlkFHkzCYWYa7p1b2nO4UFaklMnPyeeyfG3hpcRZm8PUBnZh4QQ96tm0adDSJEBW6SJzbnnuEx/65gXnpmdSpY9w0tAsTL+hOx5aNgo4mEaZCF4lTOw8c4Yl3NzI3bRuGMWZICt/+Sk+tNx7HVOgicWbPoQKeeHcjsxduw3GuS+3MpBE9dUZeC6jQReLEoYIipry/iakfbKaopJRrByUzaURPOrfWaoe1hQpdJMYVFpcye+FW/vTPDezLK2RUvw7cd+lpdE1sEnQ0OcVU6CIxqrTUeX3FTn739jq25eQzrHsb7r+sjy4/rMVU6CIx6JON+/jlgjWs2H6APu2bMeOWc7iwd5JuCKrlVOgiMSQzJ59fLljDmyt30bFFQ/73m/25ekAn6tZRkYsKXSQm5B0t5sn3NjLlg03UNePeS3oz4YLuWmtF/oMKXSSKuTuvLt3Or99cy+6DR7n67I788LI+dGihSxDli1ToIlFqeVYuP5m/isXbcumX3IInbhzIoC6tg44lUUyFLhJlDhwp4ndvr+O5hVtp06QBj1zbj2sGJlNH8+RSBRW6SJRwd/66dAc/f2MNOXlHGXduV753SW+aNawXdDSJESp0kSiwMfsw//PqSj7euI/+nVsy45ZzOLOTtnuT6lGhiwSooKiEx9/dwNP/2kTDenX4+dVnMnpwii5DlBOiQhcJyMcb9/LAyyvYui+fbwzoxANfO52kZg2CjiUxTIUucoodLCjiVwvWMGdRJl3bNGb2hCGc2yMx6FgSB8IqdDMbCfyBsj1Fp7r7rys8nwLMBFqGxtzv7gsinFUk5r2zejf//eoKsg8d5fYLunPPJb11c5BETJWFbmZ1gceBS4AsIM3M5rv76nLDHgRecPcnzawvsADoWgN5RWLSvsNH+elrq5m/bAd92jfjz99KpV+yFtGSyArnDH0wsMHdNwGY2VzgKqB8oTvQPPR5C2BHJEOKxCp3Z/6yHfz0tdUcKijinot7c+dXelA/oU7Q0SQOhVPonYDMcsdZwJAKY34C/M3M7gKaABdHJJ1IDNt3+Cj//cpK3lq1i/6dW/LItf3o3a5Z0LEkjoVT6JVdP+UVjkcDM9z9f81sGDDLzM5099L/eCGzicBEgJSUlBPJKxIT/r56Nw+8vJyDR4q5/7I+TDi/uy5FlBoXTqFnAZ3LHSfzxSmV24CRAO7+iZk1BBKBPeUHufsUYApAampqxb8URGLeoYIiHn5tNfMysji9Q3OeG9+fPu2bV/2FIhEQTqGnAb3MrBuwHbgBGFNhzDbgImCGmZ0ONASyIxlUJNp9snEf981bxs4DR5g0ogd3X9Rbc+VySlVZ6O5ebGaTgbcpuyRxuruvMrOHgXR3nw/cC/zZzO6hbDpmnLvrDFxqhYKiEh55ex3TPtxMt8QmzLvjXAZ1aRV0LKmFwroOPXRN+YIKjz1U7vPVwPDIRhOJfmt3HeQ7c5bw2e7DfGtYF+6/rA+N6+t+PQmGfvJEToC7M+vTrfz8jTU0b1iPmbcO5sLeSUHHklpOhS5STTl5hfzgxeW8s2Y3I05L4pFv9iexqdZgkeCp0EWq4eMNe7nnhaXszyvioVF9uWV4V8x0OaJEBxW6SBiKSkr5/d8/46l/baRbYhOm3az1yiX6qNBFqpCZk8/kOUtYlpnLDed05qEr+uqNT4lK+qkU+RJvr9rFffOWAfD4mIFc3q9DwIlEjk+FLlKJopJSfvPmWqZ+uJmzOrXgiRsH0rl146BjiXwpFbpIBTtyjzB59mIWb8tl7NAuPDjqdBokaM1yiX4qdJFy/vVZNt+du4TC4lL+OHoAV/bvGHQkkbCp0EWAklLn0Xc+47F3N9C7bTOeuGkgPZKaBh1LpFpU6FLr7T18lO/MWcLHG/dx7aBkfnbVmTSqrykWiT0qdKnVlmbmcsesDPbnF/Lba/txXWrnqr9IJEqp0KXW+kvaNv7n1VW0bd6Al799Lmd01I1CEttU6FLrFBaX8tPXVvH8wm2c1zORP40eQKsm9YOOJXLSVOhSq+w+WMC3n19Mxtb93HFhD77/X6dpaziJGyp0qTXSt+Rw5/OLyTtazGNjBjCqny5JlPiiQpe45+48t3AbD7+2io4tG/HcbUM4rX2zoGOJRJwKXeLa0eISHnp1FX9Jz2TEaUk8ev0AWjSuF3QskRqhQpe4tffwUe58LoO0LfuZPKIn37ukN3U0Xy5xLKxCN7ORwB8o2yR6qrv/usLz/weMCB02Btq6e8tIBhWpjrW7DnLbjHT2Hj7Kn0YP4Ardwi+1QJWFbmZ1gceBS4AsIM3M5oc2hgbA3e8pN/4uYEANZBUJy99X7+a7c5fQtGEC8+4YRr9knVtI7VAnjDGDgQ3uvsndC4G5wFVfMn40MCcS4USqw9154r0NTJyVTs+2TZk/+TyVudQq4Uy5dAIyyx1nAUMqG2hmXYBuwD+P8/xEYCJASkpKtYKKfJmCohIeeHkFryzZzhX9O/LItf1oWE/rsUjtEk6hV/Yukh9n7A3Ai+5eUtmT7j4FmAKQmpp6vNcQqZY9hwqY+GwGSzNzufeS3kz+ak9t3Cy1UjiFngWUX7EoGdhxnLE3AJNONpRIuFZuP8CEZ9PJzS/iqZsGMvJMbREntVc4c+hpQC8z62Zm9Skr7fkVB5nZaUAr4JPIRhSp3D/W7Oa6pz/BgBfvHKYyl1qvykJ392JgMvA2sAZ4wd1XmdnDZnZluaGjgbnurqkUqXEzP97ChGfT6ZHUlFcnDddKiSKEeR26uy8AFlR47KEKxz+JXCyRypWUOr94Yw3TP9rMxae344+jz6Zxfd0fJwK6U1RiSH5hMXfPXcrfV+/mluFdefDyvlopUaQcFbrEhD2HChg/M52V2w/wkyv6Mm54t6AjiUQdFbpEvc92H+KWZ9LIyStkythULu7bLuhIIlFJhS5R7cP1e7nzuQwa1q/LC7cP46xkvfkpcjwqdIlaL6Rl8qNXVtCzbVOmjTuHTi0bBR1JJKqp0CXquDuPvrOeP/xjPef3SuSJGwfSrKHWMBepigpdokpxSSkPvrqSuWmZXDsomV994yzq1Q3n/jcRUaFL1DhSWMLk2Yv5x9o9TB7Rk3sv7a01WUSqQYUuUSEnr5BbZ6SxLCuXn119JmOHdgk6kkjMUaFL4DJz8rl5+iK25x7hyRsHMfLM9kFHEolJKnQJ1MrtB7hlRhqFxaU8P34IqV1bBx1JJGap0CUwH6zP5o5ZGbRsXJ85E4bQs22zoCOJxDQVugTi1SXbuW/eMnq2bcqMWwbTvkXDoCOJxDwVupxS7s7T72/i12+uZVj3Njz9rUE01zXmIhGhQpdTprTU+Xlo6dtR/Trwv9f1p0GC9v0UiRQVupwSRSWl/PDF5by8ZDu3DO/K/1zelzpa+lYkolToUuMKikqY9HzZDUP3XdqbSSO0ibNITVChS406cKSICTPTSduaw8+vPpObdMOQSI0Ja5EMMxtpZuvMbIOZ3X+cMdeZ2WozW2VmsyMbU2LRnkMF3DDlU5Zk7udPoweozEVqWJVn6GZWF3gcuATIAtLMbL67ry43phfwADDc3febWduaCiyxYdu+fMZOX0j2oaNMH3cO5/dKCjqSSNwLZ8plMLDB3TcBmNlc4CpgdbkxE4DH3X0/gLvviXRQiR1rdx1k7LRFFJWU3f05IKVV0JFEaoVwplw6AZnljrNCj5XXG+htZh+Z2admNrKyFzKziWaWbmbp2dnZJ5ZYolrG1hyue+oT6pox7/ZhKnORUyicQq/scgSvcJwA9AK+AowGpppZyy98kfsUd09199SkJP0TPN68u3YPN05dSGLTBrx45zB6tdOt/CKnUjiFngV0LnecDOyoZMxf3b3I3TcD6ygreKkl/rp0OxOeTadn26a8cMcwkls1DjqSSK0TTqGnAb3MrJuZ1QduAOZXGPMqMALAzBIpm4LZFMmgEr1mfLSZu+cuJbVrK+ZMGEpi0wZBRxKplap8U9Tdi81sMvA2UBeY7u6rzOxhIN3d54eeu9TMVgMlwPfdfV9NBpfgld/789K+7fjj6AE0rKdb+UWCYu4Vp8NPjdTUVE9PTw/ke8vJc3cefn01z3y0hW+G9v5M0N6fIjXOzDLcPbWy53SnqFRbSanzo5dX8Jf0TG4d3o3/GXW6buUXiQIqdKmWwuJS7nlhKW8s38l3LurFPRf3UpmLRAkVuoStoKiEbz+/mH+u3cOPvtaHiRf0CDqSiJSjQpewHD5azPiZaSzcnMMvv34WY4akBB1JRCpQoUuVcvMLufmZNFZuP8Cj15/NVWdXvFFYRKKBCl2+VPaho4ydtpBN2Xk8eeNALj2jfdCRROQ4VOhyXNtzj3DT1IXsOlDA9HHncF6vxKAjiciXUKFLpTbvzeOmqQs5WFDEc+MHM6hL66AjiUgVVOjyBWt3HeSmqYsodWfOhKGc2alF0JFEJAwqdPkPyzJzufmZRTRIqMPc8UPp2VYrJorEChW6fO7TTfu4bUYarZvWZ/b4oXRurRUTRWKJCl0AeHfdHu6YlUHn1o157rYhtG/RMOhIIlJNKnRhwYqd3D13Cb3bNePZWwfTRsvfisQkFXotNy89kx++tJyBKa2Yfss5NG9YL+hIInKCVOi12IyPNvOT11Zzfq9Enh47iMb19eMgEsv0J7iWevzdDTzy9jou7duOP40ZQIMEbUwhEutU6LWMu/Obt9bx1L82cvXZHXnkm/2pp40pROKCCr0WKS11fjx/FbM+3cqNQ1L42VVnUqeO1jIXiRdhnZqZ2UgzW2dmG8zs/kqeH2dm2Wa2NPQxPvJR5WQUl5Ry37xlzPp0K7df0J2fX60yF4k3VZ6hm1ld4HHgEiALSDOz+e6+usLQv7j75BrIKCfpaHEJd89ZylurdnHfpb2ZNKKndhkSiUPhTLkMBja4+yYAM5sLXAVULHSJQkcKS7j9uQze/yybh0b15dbzugUdSURqSDhTLp2AzHLHWaHHKrrGzJab2Ytm1rmyFzKziWaWbmbp2dnZJxBXquNQQRE3T1/EB+uz+e01/VTmInEunEKv7N/mXuH4NaCru/cD3gFmVvZC7j7F3VPdPTUpKal6SaVa9ucVctPUhSzetp8/3jCA686p9O9YEYkj4RR6FlC+DZKBHeUHuPs+dz8aOvwzMCgy8eRE7DlUwA1TPmXNrkM8ddMgrujfMehIInIKhFPoaUAvM+tmZvWBG4D55QeYWYdyh1cCayIXUapje+4Rrn/6UzL35/PMuHO4uG+7oCOJyClS5Zui7l5sZpOBt4G6wHR3X2VmDwPp7j4f+I6ZXQkUAznAuBrMLMdRfpehWbdplyGR2sbcK06Hnxqpqamenp4eyPeOR+t2HeKmaQspKXWevXWwdhkSiVNmluHuqZU9p3u+48DyrFyun/IJdQz+MlFbxonUVrr1P8Yt2pzDrTPSaNm4HrPHDyWljXYZEqmtVOgx7P3Pspk4K52OLRvx/PghdGjRKOhIIhIgFXqMenvVLu6avYQebZsy67bBJGqXIZFaT4Ueg15dsp175y2jX3ILZowbTIvG2mVIRFToMWf2wm3896srGNqtDVNvTqVJA/0vFJEyaoMY8uf3N/GLBWv4ap+2PHHjQBrW0y5DIvJvKvQY4O784R/refSd9Vx+Vgf+7/qzqZ+gK05F5D+p0KOcu/PLBWv48web+eagZH59TT/qamMKEamECj2KlZY6D/51JbMXbmPcuV15aFRf7TIkIselQo9Sx7aMe3XpDiaN6MF9l56mXYZE5Eup0KNQQVEJk2cv4Z01u/n+f53GpBE9g44kIjFAhR5lDh8tZsLMdD7dvI+fXXUGY4d1DTqSiMQIFXoUyckrZNwzi1i14yCPXn82V51d2U5/IiKVU6FHiZ0HjjB22iIyc/KZMnYQF52ujSlEpHpU6FHg2MYUB44UMfPWwQzt3iboSCISg1ToAVu94yDfmr6IUnfmai1zETkJKvQAZWzN4ZZn0mjSIIFZtw2lZ9umQUcSkRimQg/Ivz7L5vZZ6XRo0YhZtw0muZU2phCRkxPWgiBmNtLM1pnZBjO7/0vGXWtmbmaV7ncnZV5fvoPxM9PontiUeXcMU5mLSERUWehmVhd4HLgM6AuMNrO+lYxrBnwHWBjpkPFkzqJt3DVnCWd3bsnc24dqYwoRiZhwztAHAxvcfZO7FwJzgasqGfcz4LdAQQTzxZWn/7WRB15ewYW9k3j21iE0b6iNKUQkcsIp9E5AZrnjrNBjnzOzAUBnd3/9y17IzCaaWbqZpWdnZ1c7bKxyd37z1lp+9eZarujfkSljU2lUX2uZi0hkhVPola0I5Z8/aVYH+D/g3qpeyN2nuHuqu6cmJSWFnzKGFZeU8sOXlvPkexsZMySFR7WWuYjUkHCucskCOpc7TgZ2lDtuBpwJvBdaDbA9MN/MrnT39EgFjUVHCku4a85i3lmzh+9c1It7Lu6lFRNFpMaEU+hpQC8z6wZsB24Axhx70t0PAInHjs3sPeC+2l7mufmFjJ+ZTsa2/VpkS0ROiSoL3d2LzWwy8DZQF5ju7qvM7GEg3d3n13TIWLPzwBFunr6ILXvzeXzMQL52VoegI4lILRDWjUXuvgBYUOGxh44z9isnHyt2bdhziG9NW8TBgmJm3HoO5/ZIrPqLREQiQHeKRtCSbfu5ZUYaCXXqaF0WETnlVOgR8u66PXz7ucW0bd6AZ28dTJc2TYKOJCK1jAo9Al7KyOIHLy3n9A7NeGbcYJKa6e5PETn1VOgnacr7G/nlgrUM79mGp24aRDPd/SkiAVGhn6DSUucXC9Yw7cPNXN6vA7+/rj8NEnT3p4gER4V+AgqKSrj3hWW8sWIn487tykOj+lKnjm4YEpFgqdCrKTe/kAnPppO2ZT8PXn46t53XTXd/ikhUUKFXQ2ZOPjc/s4isnCM8NmYAo/p1DDqSiMjnVOhhWp6Vy60z0igqcZ4bP4TB3VoHHUlE5D+o0MPwz7W7mfT8Eto0rc/ciYO196eIRCUVehVmL9zGg6+u4IyOLZg2LpW2zRoGHUlEpFIq9ONwd373t3U8/u5GRpyWxGNjBtKkgX67RCR6qaEqcbS4hPtfWsErS7YzenAKP7vqDBLqalMKEYluKvQKcvIKuWNWBou25HDfpb2ZNKKnLksUkZigQi9nY/Zhbp2Rxs4DBfxx9ACu7K/LEkUkdqjQQz7esJc7nsugfkLZ0rcDU1oFHUlEpFpU6MDcRdt48NWVdE9qwrSbz6Fz68ZBRxIRqbZaXeglpc5v3lrLlPc3cWHvJB4bM0CrJYpIzArr0g0zG2lm68xsg5ndX8nzd5jZCjNbamYfmlnfyEeNrPzCYu54LoMp72/i5mFdmHZzqspcRGJalWfoZlYXeBy4BMgC0sxsvruvLjdstrs/FRp/JfB7YGQN5I2IXQcKuG1mGmt2HuQnV/Rl3PBuQUcSETlp4Uy5DAY2uPsmADObC1wFfF7o7n6w3PgmgEcyZCQty8xl4qx08o6WMO3mcxjRp23QkUREIiKcQu8EZJY7zgKGVBxkZpOA7wH1ga9W9kJmNhGYCJCSklLdrCftlSVZ/PClFbRt1oAX7xxMn/bNT3kGEZGaEs4cemV31XzhDNzdH3f3HsAPgQcreyF3n+Luqe6empSUVL2kJ6Gk1PnlgjXc85dlDExpyfzJ56nMRSTuhHOGngV0LnecDOz4kvFzgSdPJlQkHcgvYvKcxXywfi83D+vCg6P6Uk+38YtIHAqn0NOAXmbWDdgO3ACMKT/AzHq5+/rQ4eXAeqLAhj2HmPBsBln78/nVN85i9OBTP80jInKqVFno7l5sZkC0+nEAAAWwSURBVJOBt4G6wHR3X2VmDwPp7j4fmGxmFwNFwH7g5poMHY5/rNnN3XOX0rBeHWZPGMo5XbUhhYjEt7BuLHL3BcCCCo89VO7zuyOc64S5O0+8t5Hf/W0dZ3RsztNjU+nUslHQsUREalxc3Sl6+GgxP3hxGQtW7OKK/h357TX9aFS/btCxREROibgp9A17DnH7rAw2783j/sv6cPsF3bXsrYjUKnFR6AtW7OT785bRsF5dnhs/hHN7JAYdSUTklIvpQi8uKeU3b63lzx9sZkBKS564cSAdWmi+XERqp5gt9OxDR5k8ezELN+fwrWFdePDyvtRP0PXlIlJ7xWShZ2zdz7efz+DAkSJ+f11/vjEwOehIIiKBi7lCfzEjiwdeXk6HFo14+c7B9O2oW/hFRCAGC71bYmO+2qctv72mPy0aa/1yEZFjYq7QB3VpzdNjddeniEhFehdRRCROqNBFROKECl1EJE6o0EVE4oQKXUQkTqjQRUTihApdRCROqNBFROKEuXsw39gsG9h6gl+eCOyNYJxIUa7qUa7qi9ZsylU9J5Ori7snVfZEYIV+Msws3d1Tg85RkXJVj3JVX7RmU67qqalcmnIREYkTKnQRkTgRq4U+JegAx6Fc1aNc1Ret2ZSremokV0zOoYuIyBfF6hm6iIhUoEIXEYkTMVfoZjbSzNaZ2QYzuz/oPABmNt3M9pjZyqCzlGdmnc3sXTNbY2arzOzuoDMBmFlDM1tkZstCuX4adKbyzKyumS0xs9eDznKMmW0xsxVmttTM0oPOc4yZtTSzF81sbejnbFgUZDot9Pt07OOgmX036FwAZnZP6Gd+pZnNMbOGEX39WJpDN7O6wGfAJUAWkAaMdvfVAee6ADgMPOvuZwaZpTwz6wB0cPfFZtYMyACujoLfLwOauPthM6sHfAjc7e6fBpnrGDP7HpAKNHf3UUHngbJCB1LdPapukjGzmcAH7j7VzOoDjd09N+hcx4Q6YzswxN1P9EbGSGXpRNnPel93P2JmLwAL3H1GpL5HrJ2hDwY2uPsmdy8E5gJXBZwJd38fyAk6R0XuvtPdF4c+PwSsAToFmwq8zOHQYb3QR1ScWZhZMnA5MDXoLNHOzJoDFwDTANy9MJrKPOQiYGPQZV5OAtDIzBKAxsCOSL54rBV6JyCz3HEWUVBQscDMugIDgIXBJikTmtZYCuwB/u7uUZELeBT4AVAadJAKHPibmWWY2cSgw4R0B7KBZ0JTVFPNrEnQoSq4AZgTdAgAd98O/A7YBuwEDrj73yL5PWKt0K2Sx6LizC6amVlT4CXgu+5+MOg8AO5e4u5nA8nAYDMLfKrKzEYBe9w9I+gslRju7gOBy4BJoWm+oCUAA4En3X0AkAdExftaAKEpoCuBeUFnATCzVpTNKHQDOgJNzOymSH6PWCv0LKBzueNkIvxPlngTmqN+CXje3V8OOk9FoX+ivweMDDgKwHDgytB89Vzgq2b2XLCRyrj7jtB/9wCvUDb9GLQsIKvcv65epKzgo8VlwGJ33x10kJCLgc3unu3uRcDLwLmR/AaxVuhpQC8z6xb62/cGYH7AmaJW6M3HacAad/990HmOMbMkM2sZ+rwRZT/oa4NNBe7+gLsnu3tXyn62/unuET2DOhFm1iT0pjahKY1LgcCvqHL3XUCmmZ0WeugiINA33CsYTZRMt4RsA4aaWePQn82LKHtfK2ISIvliNc3di81sMvA2UBeY7u6rAo6Fmc0BvgIkmlkW8GN3nxZsKqDsjHMssCI0Xw3wI3dfEGAmgA7AzNAVCHWAF9w9ai4RjELtgFfKOoAEYLa7vxVspM/dBTwfOsHaBNwScB4AzKwxZVfD3R50lmPcfaGZvQgsBoqBJUR4CYCYumxRRESOL9amXERE5DhU6CIicUKFLiISJ1ToIiJxQoUuIhInVOgiInFChS4iEif+H1CuVNTDwAQOAAAAAElFTkSuQmCC" alt="" />

  正态分布的概率密度曲线:

数理统计(二)——Python中的概率分布API

  

2、其他分布

  其他分布的操作与正态分布类似。

  

  ①、t分布

# 概率分布函数
x=np.linspace(-5,5,2000)
y=stats.t.cdf(x,5)
plt.plot(x,y)
plt.title('t_F') # 概率密度函数
x=np.linspace(-5,5,2000)
y=stats.t.pdf(x,5)
plt.plot(x,y)
plt.title('t_f')

数理统计(二)——Python中的概率分布API  aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhc9X3v8fdX20iyNmu1Lcmr5EXGxjbCBhsDYbULsUkCCSQk5Akp5d6QpUma0JuUtOT2NkubpGlIA01ISBrisDRgUqcGY8B4ASTjBeRVkhfJsrVbi7XOzPf+oZEzCNkeWSOdWb6v55lHZ84y853Hno+Ofud3fj9RVYwxxkSuGKcLMMYYM7Ys6I0xJsJZ0BtjTISzoDfGmAhnQW+MMRHOgt4YYyKcBb0xxkQ4C3pjRkFEPiQiNSLSKSKLna7HmOFY0BszDBE5KiI3BLDrPwMPqGqKqu4a67qMuRgW9MaMzjSgwukijDkfC3pjhhCR3wBTgRd8TTJfG2Yfl4h0ArHAHhGpGu86jQmU2Fg3xryfiBwFPquqmy6wnwLFqlo5LoUZcxHsjN4YYyKcBb0xxkQ4C3pjhmdtmiZiWNAbM7x6YKbTRRgTDBb0xgzvn4BvishpEfmq08UYMxrW68YYYyKcndEbY0yEs6A35jxE5BO+m6aGPuxuWBM2rOnGGGMiXJzTBQyVnZ2t06dPd7oMY4wJKzt37mxS1ZzhtoVc0E+fPp3y8nKnyzDGmLAiIsfOtc3a6I0xJsJZ0BtjTISzoDfGmAhnQW+MMRHOgt4YYyKcBb0xxkQ4C3pjjIlwIdeP3phQ4/Z4eb2yiX117STGx3LFzEzmT0l3uixjAmZBb8x5bKts4sH/2ktNS/d71l89O4fvfmQBk9OTHKrMmMBZ0BtzDk++eZxvPPcOM7Im8LO7l7CyOIczfW6e31XHjzYd4oP/to1ff2YpJVPSnC7VmPOyNnpjhvHfe0/yf/7wDtfMzuG/v7CSVZdMZoIrjtzURP7y6pk897kVxMcKn3r8LY43dzldrjHnZUFvzBAHTrXzlad3c9m0iTz6yctISoh93z7Fean85t5l9Lk9fO7Jt+l1exyo1JjAWNAb46ff4+WrT+8hxRXHz+6+DFfc+0N+UFFuCt+/41LeOdHGD146NI5VGjMyFvTG+PmP16t590Q73157CTmprgvuf/P8SXy0tIBfvH6EQ/Ud41ChMSNnQW+MT1NnL49sruTGkjxWL5gc8HEPrp5HSmIcf/fcu9hEPiYUWdAb4/Pjlw/T4/by4Oq5Izouc0ICX7lxNm8eaWHL4aYxqs6Yi2dBbwxwvLmLJ988zp2XFzIrJ2XEx3/s8qnkZyTxg5cO2Vm9CTkW9MYAP99ajQh8/rriizo+IS6GB64rYk/NaV492Bjk6owZHQt6E/VazvTxVHkNty3KZ1J64kW/zu2XFZCfkcSjW6qCWJ0xo2dBb6Leb3Yco6ffy31XzxzV68THxvDJK6fxRnUL+0+2B6k6Y0bPgt5EtT63l9+8cYwPzMmhOC911K935+WFJMbH8KttR0dfnDFBElDQi8gqETkoIpUi8uAw2+8XkXdEZLeIbBWREt/66SLS7Vu/W0R+FuwPYMxovLy/nqbOXj515fSgvF5GcgIfXlLAH3afoOVMX1Be05jRumDQi0gs8AiwGigB7hoMcj9PquoCVV0EfA/4gd+2KlVd5HvcH6zCjQmG35XVMCU9katn5wTtNT915TT63F6e23UiaK9pzGgEcka/FKhU1WpV7QPWAWv9d1BV/wbJCYD1LzMhr6ali9cPN3JHaSGxMRK01507KY0F+ek8vbM2aK9pzGgEEvT5QI3f81rfuvcQkc+JSBUDZ/Rf8Ns0Q0R2ichrIrJyuDcQkftEpFxEyhsbrWuaGR9PlQ/8t/7o5YVBf+07SgvYf7Kdirq2oL+2MSMVSNAPd6rzvjN2VX1EVWcBXwe+6Vt9EpiqqouBLwNPisj7Bu9W1cdUtVRVS3NygvcntDHnoqr8YdcJVhbnkJ8R/MlD1lw6hYTYGJ4ut7N647xAgr4W8D/lKQDqzrP/OuA2AFXtVdVm3/JOoAqYfXGlGhM8bx8/TW1rN2svnTImr5+RnMCN8/N4fvcJ+j3eMXkPYwIVSNCXAcUiMkNEEoA7gfX+O4iI/+2EtwCHfetzfBdzEZGZQDFQHYzCjRmNF/bU4YqL4ab5eWP2Hh9enE9rVz9bK238G+OsC04lqKpuEXkA2AjEAo+raoWIPAyUq+p64AERuQHoB1qBe3yHXw08LCJuwAPcr6otY/FBjAmU2+Plj3vruH5eLqmJ8WP2PlcVZ5OaGMcf95zkA3Nyx+x9jLmQgOaMVdUNwIYh6x7yW/7iOY57Fnh2NAUaE2w7qptp6uxjzRg12wxyxcVy8/xJbKw4Ra/7kvNOYmLMWLI7Y03UWb+7jlRXHNeOw1n2LQsn09Hj5vVD1nxjnGNBb6JKv8fLi/vqubEkj8T4sT/DXjErm/SkeP6493z9F4wZWxb0JqqUHWmhrbufmy+ZNC7vlxAXw6r5k3hpX71NIG4cY0FvosqL++pJjI/h6uLxu1/j5kvyONPnYUdV87i9pzH+LOhN1FBVXqw4xcriHJISxu/C6PJZ2STFx7Jpf/24vacx/izoTdSoqGunrq2HG0vGru/8cBLjY7l6djab9jXYNIPGERb0Jmq8uK+eGIHr545/n/Yb5uVxqr2Hd0/YhCRm/FnQm6jxYsUpSqdnkpXiGvf3vm5uLjECL1nzjXGABb2JCsebuzhwqoObxrnZZlBWiovLpk1k0z4LejP+LOhNVNh8YCBgb5jnTNAPvve+k+3UtnY5VoOJThb0Jiq8dqiR6VnJTM+e4FgNgxeBNx9ocKwGE50s6E3E6+n3sKO6eVyGPDifmTkpTMtK5rWDNrmOGV8W9CbivXmkhZ5+L9fMcX5Sm2tm57C9qtnukjXjyoLeRLxXDzbgiovhyplZTpfCNbNz6O73UH601elSTBSxoDcR77VDjSybmTUug5hdyBUzs0iIjeG1Q9Z8Y8aPBb2JaDUtXVQ3nuHa2c432wBMcMVx+YyJ1k5vxpUFvYlorx4c6OFybQi0zw+6ZnYOB+s7ONnW7XQpJkoEFPQiskpEDopIpYg8OMz2+0XkHRHZLSJbRaTEb9vf+o47KCI3B7N4Yy7ktUONTM1MZoaD3SqHumb2QO+fLdZ8Y8bJBYPeN7n3I8BqoAS4yz/IfZ5U1QWqugj4HvAD37ElDEwmPh9YBfx0cLJwY8Zar9vD9qpmrpmdg4g4Xc5Zs/NSmJSWaO30ZtwEcka/FKhU1WpV7QPWAWv9d1BV/5GaJgCDQ/StBdapaq+qHgEqfa9nzJgrP9pKV58npJptAESEa+fk8PrhJtwer9PlmCgQSNDnAzV+z2t9695DRD4nIlUMnNF/YYTH3ici5SJS3thoZzkmOF4/3ERcjHBFCHSrHOqa2Tl09LjZVXPa6VJMFAgk6If7m/d9g2qr6iOqOgv4OvDNER77mKqWqmppTk5onX2Z8LW9qonFUzOY4IpzupT3WV6UTYzA1sM2abgZe4EEfS1Q6Pe8ADjfTMfrgNsu8lhjgqKtq593TrSxfFa206UMKz0pngUFGWyrtKA3Yy+QoC8DikVkhogkMHBxdb3/DiJS7Pf0FuCwb3k9cKeIuERkBlAMvDX6so05vx3VzajCiqLQDHqAFbOy2F1zms5et9OlmAh3waBXVTfwALAR2A88paoVIvKwiKzx7faAiFSIyG7gy8A9vmMrgKeAfcD/AJ9TVRvkw4y57VVNJMXHsqgww+lSzumqomzcXuWtIzZpuBlbATVequoGYMOQdQ/5LX/xPMf+I/CPF1ugMRdjW2UTS2dkkhAXuvcELpk2EVdcDFsPN3PdXOfGyTeRL3S/BcZcpFNtPVQ1nmFFUej1tvGXGB/L5dMz2V5l7fRmbFnQm4gzGJyh3D4/aEVRNgdOddDQ0eN0KSaCWdCbiLO1sonMCQnMm5TmdCkXdJXvl9GOKmunN2PHgt5EFFVle2UzV87MIiYmdIY9OJeSKWmkJ8Vbf3ozpizoTUSpbjrDqfYelod4+/yg2Bhh+awstlU2ofq+ewmNCQoLehNRtvtuQFoRojdKDWdFUTZ1bT0cbe5yuhQToSzoTUTZVtlMfkYS07KSnS4lYIMXjbfaXbJmjFjQm4jh8So7qptZPisrpIYlvpDpWcnkZySd/WvEmGCzoDcRY19dO23d/WHRrdKfiLCiKIvtVc14vNZOb4LPgt5EjG2+/vPLZ4XHhVh/K4qyaevup6KuzelSTASyoDcRY1tlE8W5KeSmJTpdyogNjrK5rdL605vgs6A3EaHX7aHsaEvYNdsMykl1MScv1YZDMGPCgt5EhLePnaan3xu2QQ+wvCiLt4600NNvA7ya4LKgNxFhe1UTMQLLZmY6XcpFWzErm163l7ePtzpdiokwFvQmImyrbGJhQQZpifFOl3LRls3MJDZG2G7t9CbILOhN2Ovo6WdPbVvID0t8IamJ8SwsSD/be8iYYLGgN2HvrSMteLwaVsMenMtVRdnsrW2jo6ff6VJMBAko6EVklYgcFJFKEXlwmO1fFpF9IrJXRF4WkWl+2zwistv3WD/0WGNGa1tlM664GJZMm+h0KaO2fFY2Hq/yZnWL06WYCHLBoBeRWOARYDVQAtwlIiVDdtsFlKrqQuAZ4Ht+27pVdZHvsQZjgmx7VROl0yeSGB/rdCmjtmRaBonxMTbujQmqQM7olwKVqlqtqn3AOmCt/w6q+oqqDg699wZQENwyjRleY0cvB051nL3hKNy54mx6QRN8gQR9PlDj97zWt+5c7gX+5Pc8UUTKReQNEbltuANE5D7fPuWNjY0BlGTMgHCaNjBQy2dlc6i+06YXNEETSNAPNwzgsCMvicjdQCnwfb/VU1W1FPg48CMRmfW+F1N9TFVLVbU0JycngJKMGbC9spnUxDgW5Kc7XUrQDPYesukFTbAEEvS1QKHf8wKgbuhOInID8A1gjar2Dq5X1Trfz2rgVWDxKOo15j22VTVx5cwsYsNg2sBAzZ+STlpiHNusnd4ESSBBXwYUi8gMEUkA7gTe03tGRBYDjzIQ8g1+6yeKiMu3nA2sAPYFq3gT3Y43d1Hb2h1RzTYwOL1gNtsqm216QRMUFwx6VXUDDwAbgf3AU6paISIPi8hgL5rvAynA00O6Uc4DykVkD/AK8B1VtaA3QbHtbPt8eN8oNZwVRVmcON3NMZte0ARBXCA7qeoGYMOQdQ/5Ld9wjuO2AwtGU6Ax57KtsoncVBezclKcLiXolvv+StlW1cT07AkOV2PCnd0Za8KS16vsqGpmRVF2WE0bGKiZ2ROYlJZo496YoLCgN2HpYH0HzWf6wnI2qUCICMuLsthe1YTXphc0o2RBb8LSYI+USLsQ62/FrGxau/rZf6rd6VJMmLOgN2FpW2UTM7InMCUjyelSxszgLzFrvjGjZUFvwk6/x8tbR1oisreNv0npiczKmWDj3phRs6A3YWdPzWnO9HkiYljiC1lRlM1bR1roc3udLsWEMQt6E3a2VTYjAldG6IVYf8tnZdPd72F3zWmnSzFhzILehJ1tVU3Mn5JGRnKC06WMuStnZhEj2HAIZlQs6E1Y6epzs+t4a1Q02wCkJ8dzSX66DVtsRsWC3oSVsqOt9Hv07J2j0WD5rGx2HT/NmV6306WYMGVBb8LK9som4mOFy6eH/7SBgbqqKBu3V3nriE0vaC6OBb0JK1srm1g8dSLJCQEN0xQRSqdPJCEuxtrpzUWzoDdho/VMH/tOtkdN+/ygxPhYLps6kW02EYm5SBb0JmzsqG5GFa4qjvxulUOtKMpi/8l2mjt7L7yzMUNY0JuwsbWyiRRXHAsLMpwuZdwNXnzeUW1n9WbkLOhNWFBVthxq5MpZWcTHRt9/24X56aS64thm496YixB93xgTlo40naG2tZuri6OrfX5QXGwMy2Zm2gVZc1ECCnoRWSUiB0WkUkQeHGb7l0Vkn4jsFZGXRWSa37Z7ROSw73FPMIs30eP1wwMBd/XsHIcrcc6KomyOt3RR02LTC5qRuWDQi0gs8AiwGigB7hKRkiG77QJKVXUh8AzwPd+xmcC3gGXAUuBbIhI9HaBN0Gw51Mi0rGSmZUXvtHpnhy22u2TNCAVyRr8UqFTValXtA9YBa/13UNVXVHXwNOMNoMC3fDPwkqq2qGor8BKwKjilm2jR5/ayo7qZq4uj92weoDg3hZxUF1utnd6MUCBBnw/U+D2v9a07l3uBP43kWBG5T0TKRaS8sbExgJJMNNl5rJWuPg8ro7R9fpCIsLIom62HG/HY9IJmBAIJ+uFmXh72f5mI3A2UAt8fybGq+piqlqpqaU5OdJ+1mffbcriRuBiJimGJL+SaOTm0dvXzzok2p0sxYSSQoK8FCv2eFwB1Q3cSkRuAbwBrVLV3JMcacz5bDjWyZNpEUhPjnS7FcSuLcxCBVw82OF2KCSOBBH0ZUCwiM0QkAbgTWO+/g4gsBh5lIOT9/wduBG4SkYm+i7A3+dYZE5Cmzl4q6tqjtlvlUJkTEri0IINXD1oTpwncBYNeVd3AAwwE9H7gKVWtEJGHRWSNb7fvAynA0yKyW0TW+45tAb7NwC+LMuBh3zpjArLVulW+zzWzc9hTe5rWM31Ol2LCREBDAKrqBmDDkHUP+S3fcJ5jHwcev9gCTXTbcqiRicnxXDIl3elSQsa1c3L415cPs+VwI2sXna9fhDED7M5YE7JUlS2Hm7iqOIeYmOGu60enhQUZTEyO5zVrvjEBsqA3IWvfyXaaOnutfX6I2BhhZXEOWw434rVuliYAFvQmZL1yYOC6/rVzch2uJPRcOyeHps4+KuranS7FhAELehOyXj7QwKWFGeSkupwuJeQMXpy2bpYmEBb0JiQ1d/ayu+Y019nZ/LCyU1wsyE/ntUPWTm8uzILehKRXDzaiCtfPs6A/l2vn5PD28VbauvqdLsWEOAt6E5I2H2ggN9XF/ClpTpcSsq6dk4NXB4aIMOZ8LOhNyOn3eNlyqJHr5uYiYt0qz2VR4UQmJsez+YC105vzs6A3IafsaAsdvW6um2vNNucTGyNcNzePzQca6Pd4nS7HhDALehNyNu9vICE25uxEG+bcbizJpa27n/KjrU6XYkKYBb0JOZsPNnDFrCwmuAIaoSOqrSzOISE2hk37650uxYQwC3oTUo42naG68QzXzbFBzAIxwRXH8qIsNu2vR9XukjXDs6A3IWXwzPT6eXkOVxI+bizJ41hzF5UNnU6XYkKUBb0JKRsrTjFvchqFmclOlxI2rp878EvxxX3WfGOGZ0FvQkZjRy/lx1q5eb6dzY/EpPREFhakWzu9OScLehMyXtpXjyqsumSS06WEnRvm5bG75jQNHT1Ol2JCkAW9CRkbK04xLSuZOXmpTpcSdm6Yl4fqQNdUY4YKKOhFZJWIHBSRShF5cJjtV4vI2yLiFpHbh2zz+KYXPDvFoDFDtff0s72qiZvnT7K7YS/CvMmpFExMYmPFKadLMSHogkEvIrHAI8BqoAS4S0RKhux2HPg08OQwL9Gtqot8jzXDbDeGVw400O9Rbp5vzTYXQ0RYfckktlY20dZtg5yZ9wrkjH4pUKmq1araB6wD1vrvoKpHVXUvYPdhm4uyseIUuakuFhdmOF1K2PqLBZPp9ygvWe8bM0QgQZ8P1Pg9r/WtC1SiiJSLyBsicttwO4jIfb59yhsbbSS+aNPT7+HVg43cWJJnc8OOwqLCDPIzkvjTOyedLsWEmECCfrhv3khuwZuqqqXAx4Eficis972Y6mOqWqqqpTk5dkdktNlyqJGuPo8124zSYPPN64ebaO+x5hvzZ4EEfS1Q6Pe8AKgL9A1Utc73sxp4FVg8gvpMFHhh70kyJySwfFaW06WEvdULJtPn8bLJmm+Mn0CCvgwoFpEZIpIA3AkE1HtGRCaKiMu3nA2sAPZdbLEm8nT1udm0r56/WDCJuFjr7TtaiwszmJyeyAZrvjF+LvjNUlU38ACwEdgPPKWqFSLysIisARCRy0WkFrgDeFREKnyHzwPKRWQP8ArwHVW1oDdnvby/ge5+D7cunOJ0KREhJkZYfclkthxqosOab4xPQOPAquoGYMOQdQ/5LZcx0KQz9LjtwIJR1mgi2At76shLc3H59EynS4kYtyycxOPbjrBpfz0fWvy+r6WJQva3snFMe08/rx5s5JYFU4i13jZBs7hwIlPSE1m/O+BLaSbCWdAbx7xYUU+fx8sHL53sdCkRJSZGWLs4ny2Hm2jq7HW6HBMCLOiNY17YU0fBxCQW2U1SQfehxfl4vMoLe+ys3ljQG4c0dfaytbKJD146xca2GQOz81IpmZzGc7tOOF2KCQEW9MYRz+06gcerfGTJSG6yNiPx4SX57Klto6rRZp6Kdhb0ZtypKs/srOXSwgyKcm1I4rHywUunECPwvJ3VRz0LejPuKuraOXCqg9svs65/YykvLZEVRdn8YfcJmzg8ylnQm3H37Nu1JMTG8MGF1ttmrN22KJ+alm7KjrY6XYpxkAW9GVd9bi/P767jxpI8MpITnC4n4q1eMIlUVxzryo47XYpxkAW9GVevHGyg5UyfNduMk+SEONYsmsKGd07ahCRRzILejKuny2vJSXWxsjjb6VKixp2XT6Wn38v63XZRNlpZ0JtxU3e6m80H6rn9sgIbqXIcLShIZ/6UNH73Vo1dlI1S9m0z42ZdWQ0KfHzpVKdLiTp3Lp3KvpPtvHOizelSjAMs6M246Pd4WffWca6ZnUNhZrLT5USdtYumkBgfw7qymgvvbCKOBb0ZFy/vr6eho5e7l01zupSolJYYzy0LpvD8rhM2Tn0UsqA34+I/3zjOlPREPjA31+lSotanrpzGmT4Pz+ysdboUM84s6M2YO9J0hq2VTdy1dKqNO++gSwszWDI1gye2H8XrtYuy0SSgoBeRVSJyUEQqReTBYbZfLSJvi4hbRG4fsu0eETnse9wTrMJN+PjltiPExwofW1p44Z3NmPr0ihkcbe7i1UMNTpdixtEFg15EYoFHgNVACXCXiJQM2e048GngySHHZgLfApYBS4FvicjE0ZdtwsXprj6eLq9l7aJ8clMTnS4n6q2+ZBJ5aS5+ue2o06WYcRTIGf1SoFJVq1W1D1gHrPXfQVWPqupewDvk2JuBl1S1RVVbgZeAVUGo24SJ3755nO5+D59dOcPpUgwQHxvDJ6+YxuuHm6hs6HC6HDNOAgn6fMC/T1atb10gRnOsCXN9bi9PbD/KyuJs5k5Kc7oc43PX0qkkxMXwi61HnS7FjJNAgn64q2eBXskJ6FgRuU9EykWkvLGxMcCXNqFu/Z46Gjp6+cuVM50uxfjJSnFxx2UFPLuzlvr2HqfLMeMgkKCvBfyvohUAgU5EGdCxqvqYqpaqamlOTk6AL21Cmder/Pz1auZOSrVxbULQX109C7fXy89fr3a6FDMOAgn6MqBYRGaISAJwJ7A+wNffCNwkIhN9F2Fv8q0zEW7T/noOnOrgvqtn2pywIWhqVjJrLp3Cb988zumuPqfLMWPsgkGvqm7gAQYCej/wlKpWiMjDIrIGQEQuF5Fa4A7gURGp8B3bAnybgV8WZcDDvnUmgqkqP958mOm+MDGh6X9dW0RXn4cnth9zuhQzxuIC2UlVNwAbhqx7yG+5jIFmmeGOfRx4fBQ1mjCz+UAD755o53u3L7RRKkPYnEmp3DAvj19uP8K9K2eQ4gooDkwYsm+hCSpV5ccvH6ZgYhIfWmwdrELdA9cVcbqrn19uPeJ0KWYMWdCboHr1YCN7atv43AeKiLez+ZC3qDCDm0ryeGxLtbXVRzD7Jpqg8XiV7/7PAaZmJvORJTZVYLj4yk1z6Oxz87PXrAdOpLKgN0Hz3K4THDjVwVdvnkNCnP3XChdzJqVy26J8frX9CA3Wrz4i2bfRBEVPv4cfvHSIBfnp3LpgstPlmBH60g3FuD0DvaVM5LGgN0Hx6x1HOXG6m79dPZcYG4o47EzLmsDHl03ld2/VcPCUjYETaSzozag1dvTyby9Xcs3sHJYX2V2w4eqvb5hNiiuOf3ihwiYRjzAW9GbUvvs/B+hxe3jog0NHrzbhZOKEBL5y02y2VzWzsaLe6XJMEFnQm1HZeayVZ3bWcu9VM5mVk+J0OWaUPr50KnPyUvnHDfvo6fc4XY4JEgt6c9E8XuWh599lUloin7+uyOlyTBDExcbwrQ+WUNPSzSOvVDpdjgkSC3pz0X657QgVde1845Z5TLDb5yPG8qJsPrwkn39/tYr9J9udLscEgQW9uSjVjZ18f+NBbpiXy60LrTtlpPm7W0pIT4rn68/uxe0ZOnGcCTcW9GbEvF7l68/uxRUXwz9+aIENQxyBJk5I4B/WzmdvbRuPb7NxcMKdBb0ZsV9tP0rZ0Vb+7tYS8tJswu9IdcuCydxYkse/vHjI+taHOQt6MyIVdW18508HuG5uLrdfZuPZRDIR4Z8+vIDUxHi+8Ltd1gsnjFnQm4B19bn5/O92kZEcz/dvX2hNNlEgO8XFP9+xkIP1Hfy/DfudLsdcJAt6E7BvPV/BkaYz/OjORWSluJwux4yTa+fkcu9VM/j1jmNsrDjldDnmIljQm4D8vuw4T++s5fMfKGL5LBvmINp8bdUcFuSn85Wn9lDZ0Ol0OWaEAgp6EVklIgdFpFJEHhxmu0tEfu/b/qaITPetny4i3SKy2/f4WXDLN+Oh7GgL33zuXVYWZ/OF64udLsc4wBUXy6OfvAxXXAz3/bqc9p5+p0syI3DBoBeRWOARYDVQAtwlIkMHNbkXaFXVIuCHwHf9tlWp6iLf4/4g1W3GyYnT3dz/m50UTkzmJ3ctsTlgo9iUjCR++oklHG/p4kvrduPx2sBn4SKQb+1SoFJVq1W1D1gHrB2yz1rgCd/yM8D1Ylfqwl5bdz/3/qqMPo+X/7inlPTkeKdLMg5bNjOLb62Zz+YDDTz0/Ls2ymWYCCTo84Eav+e1vnXD7qOqbqANyPJtmyEiu0TkNRFZOdwbiMh9IlIuIuWNjY0j+gBmbHT3efjsE2VUNRfEEQgAAAxdSURBVHby008ssQHLzFmfvGIa918zi9++eZwfv2zj4YSDQAYoGe7MfOiv8XPtcxKYqqrNInIZ8JyIzFfV9wygoaqPAY8BlJaW2imCw/o9Xh548m3Kj7Xyb3ctZmVxjtMlmRDz9VVzaOjo4YebDpGVksDdV0xzuiRzHoEEfS1Q6Pe8AKg7xz61IhIHpAMtOvB3XS+Aqu4UkSpgNlA+2sLN2Ohze/nS73fx8oEG/u9tl3DrwilOl2RCkIjw3Y8spK2rn28+9y6AhX0IC6TppgwoFpEZIpIA3AmsH7LPeuAe3/LtwGZVVRHJ8V3MRURmAsWATTUfonrdHv73b3ey4Z1TfPOWefbFNecVHxvDT+9ewvVzc/nmc+/y6x1HnS7JnMMFg97X5v4AsBHYDzylqhUi8rCIrPHt9gsgS0QqgS8Dg10wrwb2isgeBi7S3q+qLcH+EGb0OnvdfPaJcjbtb+Dba+fz2ZUznS7JhAFXXCz/fvdl3FiSx0PPV/DTVyvtAm0IklD7RyktLdXycmvZGU+n2nr4zK/KOFjfwT99aAEfvbzwwgcZ46fP7eVvntnD87vruGvpVL69dr51xR1nIrJTVUuH22azRUS5iro27v1VOZ29bn5xTynXzsl1uiQThhLiYvjhRxdRMDGJR16p4mRbN/9652LSk6xLbiiwX7lRSlV5qqyGD/90OyLw9P1XWsibUYmJEf7m5rn804cXsPVwE2t+spWKujanyzJY0Eelrj43X316L197di+l0yey/oGrmDc5zemyTIS4a+lUfv9XV9Db7+XDP93O78uOW7u9wyzoo0zZ0RZu+fFW/mtXLV+8vphff2YZOak2EqUJrsumZfLHL1zF5dMz+fqz73Dfb3bS0NHjdFlRy4I+SnT3efiHFyr46KM76Pd4+e29y/jrG2cTG2MjVZixkZ3i4onPLOWbt8zjtUON3PTDLTy/+4Sd3TvAet1EOFXlj3tP8p0/HeDE6W4+deU0vr5qLhNcdh3ejJ/Khk6++vQedtec5oqZmfz9mvnMnWTNhcF0vl43FvQRbG/tab79x32UHW1l3uQ0/v6DJSybmXXhA40ZAx6v8ru3jvPPLx6kvbufTyybxuevKyLX5h0OCgv6KLO39jT/uukwLx9oIDslga/eNIc7SgutmcaEhNNdffzLi4d48q3jxMfK2UHSbNay0bGgjwKqyvaqZn7+ejWvHGwkPSmez141g0+vmE5qovVlNqHnaNMZfvzyYZ7bfQJXXCx3lBbw6eXTmWkjpV4UC/oI1tnr5g9v1/LEjmNUNnSSOSGBe6+awaeunGYBb8JCZUMn//5qFS/sqaPP4+W6ubl88spprCzKtrtrR8CCPsL0e7y8friR53bV8eK+U/T0e1lYkM49V07nloWTSYyPdbpEY0assaOX3755jP984xhNnX3kpLr40OJ8PrKkgDmTUp0uL+RZ0EeA7j4PWyub2Hygno0V9bSc6SMjOZ5bF07mI0sKWDx1otMlGhMUfW4vmw808MzOWl492IDbqxTlpnBTSR43z5/Egvx0Yux60/tY0Ichr1c51NDBm9UtvHaokW2VTfS6vaS44rhmTg63Lcrnmtk5JMTZn7YmcjV19vLHPXW8uK+eN4+04PEqeWkurirKYUVRFiuKssmzXjuABX1Y6Opzs/9kO7tr2nizupmyoy20dvUDMDUzmevn5XLDvDwun55p4W6iUuuZPjYfaGDT/np2VDdz2vf9mJUzgaUzMllUmMGlhRkU56ZGZQ8zC/oQoqrUt/dS3djJgVMdvHuijXdOtFHV2InX908xNTOZZTMyWTYzi2UzMinMTHa2aGNCjNer7DvZzvaqJrZXNfP2sVbae9wAJCfEsiA/nZIpaczOS2V2XgrFeamkRXjnBAv6ceb2eKnv6KXudDd1p7s53txFddMZqho7qWro5Eyf5+y+uakuFuSnMz8/nQW+x6R0+1PUmJHwepWjzWfYU3uaPTVt7K45zcFTHXT3//m7NiktkeK8FAozk5mamUzhxIGfUzOTSU8O/18CFvRB0tPvoamzl+bOPprP9NLU2Xf2eWNHLyfbujnR2s2p9p6zZ+eD8jOSmJkzgVk5Kczy/SzKTbG7Ao0ZI16vcuJ0N4fqOzhU38mh+g6qGjupaek62yw6KDUxjry0RPLSXOSmJpKb6iIn1UVu2sBy1oQEMpITSE+KD9mm01FPPCIiq4B/BWKBn6vqd4ZsdwG/Bi4DmoGPqepR37a/Be4FPMAXVHXjRX6OEVNV+j1Kd7+Hnn4P3X0euvsHHj19HnrcHrr6PHT0uGnv7h/42dM/7PO27n46e93Dvk9yQizZKS6mZCRyxaws8jOSmJKR9J6fSQnW5dGY8RQTIxRmJlOYmcz18/Les62jp5+alm5qWruoaemitrWb+vYe6tt7KDvaQkN7L30e77CvOyEhlozkBDKS45mYnEB6cjzpSfGkuOJIToglxRXHBL/l5IS4gZ+ugeeJcbG44mNwxcUgMj7XEi4Y9L7JvR8BbgRqgTIRWa+q+/x2uxdoVdUiEbkT+C7wMREpYWAy8fnAFGCTiMxWVQ9B1nKmj489uoMet4fuPu9AsPd78Aw9tT6P2BghNTGO1MQ40hLjSU2MY2pmMqmJ8aQlxZGd4iI7JYGsCS6yUhLIThn4mZxgA4QZE05SE+MpmRJPyZThB1ZTVdq6+2no6KW+vYfWrn7auvo43dVPa1c/p7sHlk939VHX1k2770Swp3/4Xw7DEQFXXAyJ8bFnw39Bfjo/+fiSYH3MswJJqKVApapWDxQn64C1gH/QrwX+3rf8DPATGfhVtRZYp6q9wBHf5OFLgR3BKf/PXHExFOWmkBQfS2JCLEnxvkdCLIlnl2MGtvttS4qPJdUX6skJseP2G9YYE7pExHfWnsDsvMBv1vJ4lTN9bs70ujnT6xn42ffn5c5eN73ugRPR3n4PPb7lgYeXwsykMfk8gQR9PlDj97wWWHaufVTVLSJtQJZv/RtDjs0f+gYich9wH8DUqVMDrf09Jrji+Pe7L7uoY40xJhhiY4S0xPiQ6+ETyFWF4U5xh7aHnGufQI5FVR9T1VJVLc3JyQmgJGOMMYEKJOhrgUK/5wVA3bn2EZE4IB1oCfBYY4wxYyiQoC8DikVkhogkMHBxdf2QfdYD9/iWbwc260C/zfXAnSLiEpEZQDHwVnBKN8YYE4gLttH72twfADYy0L3ycVWtEJGHgXJVXQ/8AviN72JrCwO/DPDt9xQDF27dwOfGoseNMcaYc7MbpowxJgKc74ap0LzFyxhjTNBY0BtjTISzoDfGmAgXcm30ItIIHHO6jouQDTQ5XcQ4s88cHewzh4dpqjrsjUghF/ThSkTKz3UhJFLZZ44O9pnDnzXdGGNMhLOgN8aYCGdBHzyPOV2AA+wzRwf7zGHO2uiNMSbC2Rm9McZEOAt6Y4yJcBb0Y0BEvioiKiLZTtcy1kTk+yJyQET2isgfRCTD6ZrGgoisEpGDIlIpIg86Xc9YE5FCEXlFRPaLSIWIfNHpmsaLiMSKyC4R+aPTtQSLBX2QiUghA/PrHne6lnHyEnCJqi4EDgF/63A9Qec3b/JqoAS4yzcfciRzA19R1XnAFcDnouAzD/oisN/pIoLJgj74fgh8jWFm0opEqvqiqrp9T99gYHKZSHN23mRV7QMG502OWKp6UlXf9i13MBB875sGNNKISAFwC/Bzp2sJJgv6IBKRNcAJVd3jdC0O+QzwJ6eLGAPDzZsc8aE3SESmA4uBN52tZFz8iIETNa/ThQRTIJODGz8isgmYNMymbwD/B7hpfCsae+f7zKr6vG+fbzDw5/5vx7O2cRLQ3MeRSERSgGeBL6lqu9P1jCURuRVoUNWdInKt0/UEkwX9CKnqDcOtF5EFwAxgj4jAQBPG2yKyVFVPjWOJQXeuzzxIRO4BbgWu18i8MSMq5z4WkXgGQv63qvpfTtczDlYAa0TkL4BEIE1E/lNV73a4rlGzG6bGiIgcBUpVNdxGwBsREVkF/AC4RlUbna5nLPgmvD8EXA+cYGAe5Y+raoWjhY0hGThbeQJoUdUvOV3PePOd0X9VVW91upZgsDZ6M1o/AVKBl0Rkt4j8zOmCgs13sXlw3uT9wFORHPI+K4BPAtf5/l13+850TRiyM3pjjIlwdkZvjDERzoLeGGMinAW9McZEOAt6Y4yJcBb0xhgT4SzojTEmwlnQG2NMhPv/KgtK+wID5rAAAAAASUVORK5CYII=" alt="" />

  ②、F分布

# 概率分布函数
x=np.linspace(-1,8,2000)
y=stats.f.cdf(x,5,8)
plt.plot(x,y)
plt.title('f_F') # 概率密度函数
x=np.linspace(-1,8,2000)
y=stats.f.pdf(x,5,8)
plt.plot(x,y)
plt.title('f_f')

数理统计(二)——Python中的概率分布API  aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXicZ3nv8e89o32zrcX7ptiOjZ3E2JFtsgAJgcZpcjkpYbFLaEt7yCklQEspSzlNIYfTU2gPLZSUEkLPaQvBhNCCAUOALEAS4tjO5jiOE++W7cTyql2j0dznj5GcsSJZY+kdvbP8PtelS7O8mrkzl/zLo/t93ucxd0dERHJfJOwCREQkGAp0EZE8oUAXEckTCnQRkTyhQBcRyRMKdBGRPKFAFxHJEwp0KVhmttDMnjKzNjP78DDHlJvZD83stJl9d7xrFDkfRWEXIBKijwMPu/uycxzzDmAKUOfu8fEpS2R0NEKXQjYH2J7GMS8qzCUXmC79l0JkZg8CbwZ6gTiw3N1fHHTMZ4FPAQb0AB9x92+Md60i6VKgS8Eys4eBb7r73ec45jPAfHe/ZbzqEhkttVxERPKEAl1EJE8o0EVE8oQCXUQkTyjQRUTyhGa5iIjkCY3QRUTyhAJdCp6ZbTez9iG+3hN2bSLnI62Wi5mtBr4ERIG73f1vBz3/D8DV/XcrgMnuPjHgWkVE5BxGDHQziwIvAm8DmoHNwDp3f36Y4z8ELHP3PzzX69bX1/vcuXNHU7OISMHaunXrMXdvGOq5dFZbXAnscvc9AGa2HrgRGDLQgXXAX4/0onPnzmXLli1pvL2IiAwws/3DPZdOD30GcDDlfnP/Y0O90RygEXhwmOdvNbMtZralpaUljbcWEZF0pRPoNsRjw/Vp1gL3uXvfUE+6+13u3uTuTQ0NQ/7FICIio5ROoDcDs1LuzwQOD3PsWuDbYy1KRETOXzqBvhlYYGaNZlZCMrQ3DD7IzBYCk4DfBFuiiIikY8RA79+p5TbgfmAHcK+7bzezO8xsTcqh64D1rktPRURCkdaeou6+Edg46LHbB93/THBliYjI+dKVoiIieUKBHpJHXjrGVx/ezZ6W9rBLEZE8kVbLRYJ116928zcbXwDgSw+8yN2/t4IrF9SHXJWI5DqN0MfZvmMdfOGnO1m9ZCq/+ourmVNbyYe+/SRHW7vDLk1EcpwCfZx95aFdFEcj3HHTEmbXVXDne5bT3hPnH37xUtiliUiOU6CPo85YnI3bjnDTsulMri4DYP7kKt6zag73bjnIgeOdIVcoIrlMgT6OfrHjKJ2xPm56/dlL4XzgqnkY8B+P7wulLhHJDwr0cfSrF1uYWFHMirm1Zz0+paaM1RdN5TubD9IZi4dUnYjkOgX6OHF3frP7OJddUEck8tr1zt77hjm0dsf56XMvh1CdiOQDBfo4OXiii0Onurh8Xt2Qz6+YW8uMieVseGa4dc9ERM5NgT5Onth3AoBVFwwd6JGIccPSaTzy0jFOdMTGszQRyRMK9HGy/fBpyoujzGuoGvaYNUunE084P3nuyDhWJiL5QoE+TrYfbmXRtGqiQ/TPByyeVsOcugp+/vwr41iZiOQLBfo4SCScHYdbWTK95pzHmRnXLJrCY7uPa7aLiJw3Bfo4aD7ZRVtPnMXTJox47FtfN5lYPMGvXzo2DpWJSD5RoI+DF19pA2DRtOoRj13RWEt1WREP7FDbRUTOjwJ9HOw91gHABfWVIx5bHI3w5gsbePCFoyQS2vxJRNKnQB8He451UFtZwsSKkrSOv2rhZI61x9jxcmuGKxORfKJAHwd7j7XTmMbofMCV85Nroz+6S310EUmfAn0c7D3WcV6BPnVCGfMnV+nEqIicFwV6hnX0xHmltee8Ah2So/TN+07Q3duXocpEJN+kFehmttrMdprZLjP75DDHvMvMnjez7WZ2T7Bl5q4DJ5JrnM+pqzivn7tyfj3dvQme3H8yE2WJSB4aMdDNLArcCVwHLAbWmdniQccsAD4FXOHuS4A/zUCtOenwqS4AZkwsP6+fe8O8OqIR4xH10UUkTemM0FcCu9x9j7vHgPXAjYOOeT9wp7ufBHD3o8GWmbtGG+hVpUUsmzVRJ0ZFJG3pBPoM4GDK/eb+x1JdCFxoZo+a2eNmtnqoFzKzW81si5ltaWlpGV3FOebQqW6Ko0Z9Vel5/+wV8+t59tBpTnf1ZqAyEck36QT6UKtJDb7ipQhYAFwFrAPuNrOJr/kh97vcvcndmxoaGs631px0+FQX0yaUD7mpxUhWXVCLO2zdfyIDlYlIvkkn0JuBWSn3ZwKDd2FoBn7g7r3uvhfYSTLgC96R011Mm1A2qp9dPnsSJdEIm/Yo0EVkZOkE+mZggZk1mlkJsBbYMOiY7wNXA5hZPckWzJ4gC81Vh091n3f/fEBZcZSlsybw+F4FuoiMbMRAd/c4cBtwP7ADuNfdt5vZHWa2pv+w+4HjZvY88BDwF+5+PFNF54p4X4KXW7uZPspAB1jVWMdzh07T3qPldEXk3NKah+7uG939Qnef5+7/q/+x2919Q/9td/ePuvtid7/Y3ddnsuhccbSth76EjynQVzbW0pdwzUcXkRHpStEMOnK6G2DUPXSAS+dMIhoxNu0t+D94RGQECvQMamnrAWByzflPWRxQWVrExTMm6MSoiIxIgZ5BLe3JQG8YxRz0VKsuqOWZ5lN0xbSui4gMT4GeQS1tPZhBbWV666APZ1VjLb19zlMH1UcXkeEp0DOopa2HusoSiqJj+5ib5tYSMdR2EZFzUqBn0LH2nlFd8j9YTVkxi6fX6MSoiJyTAj2DWtp6aKgee6BDcj76UwdO0RNXH11EhqZAz6AgA33F3Fp64gmeO3Q6kNcTkfyjQM8Qd6elvWfMM1wGrJg7CYBNWgZARIahQM+Q1u44sXgisBF6XVUpCyZX8YQCXUSGoUDPkGMDc9ADCnRILgOwZd9J+hKDVy8WEVGgZ8zAVaJBzHIZsLKxlvaeODuOtAb2miKSPxToGXKiIwZAXdXYLipKtWJuLYDaLiIyJAV6hpzsTAb6pIrgAn36xHJm1ZYr0EVkSAr0DDnZP0KfWFEc6OuunFvHE/tO4K4+uoicTYGeISc7e6ksiVJaFA30dVc2TuJER4zdLe2Bvq6I5D4Feoac7IwxMcB2y4CVjXUAPLFXC3WJyNkU6BlyqrOXSZXBtlsA5tZV0FBdyhNa10VEBlGgZ8iJjligJ0QHmBkrG2vZtFd9dBE5mwI9Q05lqOUCyfXRj5zupvlkV0ZeX0RyU1qBbmarzWynme0ys08O8fwfmFmLmT3d//Xfgi81t5zs7KU24BkuAwbmo2/ep+mLIvKqEQPdzKLAncB1wGJgnZktHuLQ77j76/u/7g64zpzSl3Bau3szNkJfOKWamrIizUcXkbOkM0JfCexy9z3uHgPWAzdmtqzcdrqrF3eYlKEReiSS7KMr0EUkVTqBPgM4mHK/uf+xwW42s2fN7D4zmzXUC5nZrWa2xcy2tLS0jKLc3DBw2f+kMe4lei4rG2vZc6yDo23dGXsPEckt6QS6DfHY4OkVPwTmuvslwC+Afxvqhdz9LndvcvemhoaG86s0h5zqHLhKNHOBPtBH37JP89FFJCmdQG8GUkfcM4HDqQe4+3F37+m/+3Xg0mDKy00nO3sBqM1goF80YwLlxVG1XUTkjHQCfTOwwMwazawEWAtsSD3AzKal3F0D7AiuxNxzsjMz67ikKo5GuHTOJO1gJCJnjBjo7h4HbgPuJxnU97r7djO7w8zW9B/2YTPbbmbPAB8G/iBTBeeCk+PQQ4dkH/2Fl1s53dWb0fcRkdxQlM5B7r4R2DjosdtTbn8K+FSwpeWu0129FEWMypJgF+YabMXcWtxh6/4TvGXRlIy+l4hkP10pmgGt3b3UlBdjNtT55OAsmz2R4qip7SIigAI9I1q74tSUpfXHz5iUFUdZOnOiToyKCKBAz4iBEfp4WNlYy7bm03TG4uPyfiKSvRToGdDWHaembHwCfUVjLfGE8/SBU+PyfiKSvRToGdDa1Uv1OLRcAC6dM4mIoT66iCjQM6G1u3fcRug1ZcUsnl6jPrqIKNAzobUrTk35+IzQIblx9JMHThKLJ8btPUUk+yjQA9bbl6Crt2/cRuiQPDHaE0+w7ZD66CKFTIEesLbu5GyT8ZrlArBi7iRAG0eLFDoFesBa+y/DH6+TogB1VaXMn1yljaNFCpwCPWCt3clAH8+WCyTbLlv2naQvoY2jRQqVAj1grV3j33KB5MbRbT1xdhxpHdf3FZHsoUAPWNvACH0cZ7mANo4WEQV64MJquUyfWM7MSeU8vkd9dJFCpUAP2EDLZTxPig64fF4dj+85oT66SIFSoAestbuXiEFlyfgH+hXz6znd1cv2w6fH/b1FJHwK9IAl13EpJhLJ7FroQ7l8Xj0Aj+w6Nu7vLSLhU6AHrK17fC/7T9VQXcqiqdU8tkt9dJFCpEAPWGt3L9Wl43tCNNUV8+t5Yt8Junv7QqtBRMKhQA9Ya3c8lBOiA66YX0csnmDrfi0DIFJo0gp0M1ttZjvNbJeZffIcx73DzNzMmoIrMbd09MSpKg0v0Fc21lEUMfXRRQrQiIFuZlHgTuA6YDGwzswWD3FcNfBhYFPQReaSjp44lSEGelVpEctmT+RRBbpIwUlnhL4S2OXue9w9BqwHbhziuP8JfAHoDrC+nNPe0xdqoEOyj77t0GlOdcZCrUNExlc6gT4DOJhyv7n/sTPMbBkwy91/FGBtOam9Z/y2nxvOFfPrcUdXjYoUmHQCfagJ1WcuRTSzCPAPwJ+P+EJmt5rZFjPb0tLSkn6VOSLel6C7NxHKRUWpXj9rIpUlUfXRRQpMOoHeDMxKuT8TOJxyvxq4CHjYzPYBbwA2DHVi1N3vcvcmd29qaGgYfdVZqiOWnCpYWRoNtY7iaIRVF9TxyEsKdJFCkk6gbwYWmFmjmZUAa4ENA0+6+2l3r3f3ue4+F3gcWOPuWzJScRbr6Emu4xLmLJcBb1xQz77jnew/3hF2KSIyTkYMdHePA7cB9wM7gHvdfbuZ3WFmazJdYC45E+gh99ABrl44GYCHd+Zfa0tEhpZW8rj7RmDjoMduH+bYq8ZeVm5q6w/0sGe5AMytr2RuXQUP7TzK718+N+xyRGQc6ErRAGVTywXgqoWT+c3u41oGQKRAKNADNBDoYc9yGfDmhQ30xBOavihSIBToAWrvSY6Ew56HPuCyC+ooLYqojy5SIBToAWrv334uG3roAGXFUS6bV8cvX1SgixQCBXqAsmUeeqqrLmxg77EO9h3T9EWRfKdAD1B7T5ziqFFalEWBfmb64tGQKxGRTFOgByjspXOHMre+ksb6Sh5W20Uk7ynQA9TeHe7SucO5amEDv9l9nM5YPOxSRCSDFOgBas/CETrA2143hZ54gl+9qLVdRPKZAj1AHbHsHKGvaKxlQnkxP3/+lbBLEZEMUqAHqL2nLytH6MXRCG9ZNJkHXniFeF8i7HJEJEMU6AFq7+7NykAH+K3FUzjV2cvmfdo8WiRfKdAD1NHTl1Vz0FO96cIGSooiaruI5DEFeoDC3iD6XCpLi7hyfj0/e/5l3H3kHxCRnKNAD4i70x6LU52lgQ7JtkvzyS5eeLkt7FJEJAMU6AHpjPXhnj3ruAzlmtdNwQx+tl1tF5F8pEAPSEf/RTsVWRzoDdWlLJ89ifu3vxx2KSKSAQr0gHT2L51bWZKdJ0UHXHfRVJ4/0speLdYlkncU6AHp7F9psSLLA/36S6YB8KNnDodciYgETYEekK7e/pZLluxWNJxpE8ppmjOJH287EnYpIhIwBXpAOnpyY4QOcMMl03jh5TZ2HdVsF5F8klagm9lqM9tpZrvM7JNDPP/HZrbNzJ42s0fMbHHwpWa3gZZLeQ4E+m9fPA0z+OEzGqWL5JMRA93MosCdwHXAYmDdEIF9j7tf7O6vB74AfDHwSrNcrrRcACbXlLGqsZYfPXtYFxmJ5JF0RugrgV3uvsfdY8B64MbUA9y9NeVuJVBwKTEwQs/2WS4Drr9kOrtbOtj5itouIvkinUCfARxMud/c/9hZzOyDZrab5Aj9w0O9kJndamZbzGxLS0t+7aAzMG0xF1oukJy+GDH4oWa7iOSNdALdhnjsNSNwd7/T3ecBnwD+x1Av5O53uXuTuzc1NDScX6VZ7tVpi9nfcgGoryrljQsa+P5Th0kkCu4PKpG8lE6gNwOzUu7PBM41rFsP3DSWonJRZ2+ckqII0chQ///LTm9fPoNDp7p4fO/xsEsRkQCkE+ibgQVm1mhmJcBaYEPqAWa2IOXu9cBLwZWYG7pifTkxZTHVtUumUl1axPe2Hgq7FBEJwIiB7u5x4DbgfmAHcK+7bzezO8xsTf9ht5nZdjN7Gvgo8PsZqzhLdcb6qMyRdsuAsuIo118yjZ88d4SOHm0gLZLr0kogd98IbBz02O0ptz8ScF05pzMWz5kToqluvnQm6zcf5KfPvczNl84MuxwRGQNdKRqQzhxsuQA0zZnE7NoK/vOp5rBLEZExUqAHpDPWR3lx7gW6mfH25TN4bPdxDp3qCrscERkDBXpAumJ9Wb25xbncvDzZavnuloMjHCki2UyBHpCOHO2hA8yqreCNCxr4zuaDxPsSYZcjIqOkQA9IV6yPihxsuQx4z6rZHDndzUM78+sKXpFCokAPSK6eFB1wzaLJTKkp5Z5N+8MuRURGSYEekK5YH+U5Ng89VVE0wrtXzObhF1s4eKIz7HJEZBQU6AHo7UsQ60vkzEqLw1m7YhYGrN98IOxSRGQUFOgByKXNLc5l+sRy3rJoMt/Z3EwsrpOjIrlGgR6ArhxbafFcbnnDHI619/DjbVpWVyTXKNAD0Bkb2K0ot0foAG++sIEFk6u4+9d7tZuRSI5RoAfg1bXQcz/QzYw/vLKR7Ydb2bT3RNjliMh5UKAHINc2txjJ7yybQW1lCXf/em/YpYjIeVCgB2Cg5ZLrJ0UHlBVHuWXVbB544RX2HusIuxwRSZMCPQBdedRyGXDLZXMojkT410c0ShfJFQr0AHTkYaBPri7jpmXTuXfLQY62dYddjoikQYEegK4zs1zyo4c+4E+umk9vX0K9dJEcoUAPQD7Nckk1t76SNUun883H93OiIxZ2OSIyAgV6AM5cKZrDqy0O54NXz6ert0+9dJEcoEAPQFdvH2XFESIRC7uUwC2YUs11F03l3x7bx+mu3rDLEZFzSCvQzWy1me00s11m9skhnv+omT1vZs+a2QNmNif4UrNXR0+cyjzrn6e67eoFtPXENUoXyXIjBrqZRYE7geuAxcA6M1s86LCngCZ3vwS4D/hC0IVms+TSufnXbhmweHoN1100lbt/vYdj7T1hlyMiw0hnhL4S2OXue9w9BqwHbkw9wN0fcveBRbQfB2YGW2Z2y/XNLdLxsWsX0h1P8JUHd4VdiogMI51AnwGk7h7c3P/YcP4I+MlQT5jZrWa2xcy2tLTkz1Znnb25vblFOuY1VPGuppl8a9N+DhzXBhgi2SidQB/qTN+Qy/CZ2S1AE/B3Qz3v7ne5e5O7NzU0NKRfZZbr7Inn9H6i6frINRcSMeOLP98ZdikiMoR0Ar0ZmJVyfybwmsWyzeytwKeBNe5eUI3WzlgflaX5H+hTJ5Txvisa+cEzh3nu0OmwyxGRQdIJ9M3AAjNrNLMSYC2wIfUAM1sGfI1kmB8Nvszs1lUALZcBH7hqHpMqSvjsD7drvXSRLDNioLt7HLgNuB/YAdzr7tvN7A4zW9N/2N8BVcB3zexpM9swzMvlpc5YYbRcACaUF/Pxaxeyed9JNjyjXY1Esklaw0p33whsHPTY7Sm33xpwXTmlsye/py0O9s6mWXxr0wH+ZuMO3vq6KVSWFsZfJyLZTleKjpG709mb/9MWU0UjxmdvXMIrrT38k6YximQNBfoYxfoS9CW84Eapy2dP4ublM/nGI3t48ZW2sMsRERToY9aVxwtzjeQvf3sRVaVFfPy+Z+lL6ASpSNgU6GOUj5tbpKuuqpTPrFnC0wdP8W+P7Qu7HJGCp0Afo64820/0fK1ZOp23LJrM392/k4MndAWpSJgU6GM0sBZ6Pq+2eC5mxuduuohoxPj4fc+SUOtFJDQK9DHK192Kzsf0ieXcfsNifrPnOF//9Z6wyxEpWAr0Meos8JbLgHc2zeS6i6by9z/bqWUBREKiQB+jV0fohdlyGWBm/O+3X0xdZSkf/vZTZ/5HJyLjR4E+Rmq5vGpiRQlffPdS9h7v4K9/oLVeRMabAn2MuhToZ7l8Xj23XT2f725t5p4nDoRdjkhBUaCPkVour/Wnb72QN1/YwGc2bOfJAyfDLkekYCjQx6gzFscMyor1UQ6IRowvr13GtAnlfOCbWzna1h12SSIFQSk0Rp2xPiqKo5gNtbFT4ZpQUczX3nsprV1xbv33rWdaUyKSOQr0MeqMFc7mFufrddNq+Me1r+eZ5lN8ZP1TWu9FJMMU6GPUGYvrhOg5XLtkKrffsJifPf8Kn/vx82GXI5LXNLQco85YYa2FPhrvu6KR5pNdfOORvUyuLuMDV80LuySRvKRAH6MuBXpaPv3br+NoWw+f/+kLlBVHeN8VjWGXJJJ3FOhjlGy56GMcSSRifPFdS4nF+/jsD5+ntCjK766aHXZZInlFPfQxSp4U1Qg9HcXRCF9et4yrFzbw6e9v4zubdeGRSJDSCnQzW21mO81sl5l9cojn32RmT5pZ3MzeEXyZ2Us99PNTWhTlq7dcyhsXNPCJ723jbq3OKBKYEQPdzKLAncB1wGJgnZktHnTYAeAPgHuCLjDbJQNdLZfzUVYc5eu/dynXXzyNz/14B39//06t+yISgHSSaCWwy933AJjZeuBG4MwcNHff1/9cIgM1ZrUuTVscldKiKF9et4yq0iK+8tAujrX3cMeNF1FSpC6gyGilE+gzgIMp95uBVZkpJ7e4O529armMVjRi/O3NF9NQXcpXHtrFvuMd/MstlzKxoiTs0kRyUjrDoaGuaR/V38dmdquZbTGzLS0tLaN5iazS3ZvAXZtbjIWZ8bFrF/LFdy3lyf2nuOnOR9nd0h52WSI5KZ1AbwZmpdyfCRwezZu5+13u3uTuTQ0NDaN5iawysIlDoe4nGqS3L5/JPe9fRVt3nBu/8ig/enZUv2IiBS2dQN8MLDCzRjMrAdYCGzJbVm4YWDpXI/RgNM2tZcOHruTCKVXcds9T/NX3n6O7V4t6iaRrxEB39zhwG3A/sAO41923m9kdZrYGwMxWmFkz8E7ga2a2PZNFZwvtVhS8GRPL+c5/v4z3v7GR/3h8Pzd/9TFefKUt7LJEckJavQJ33whsHPTY7Sm3N5NsxRSUgZaLAj1YxdEIn75+MSsb6/jE957lhi8/wp+97ULe/8ZGiqKaBSMyHP3rGIMu7VaUUW9bPIWf/dmbeMuiyXz+py/wjn/5DS9ptC4yLAX6GKjlknn1VaV89ZblfHndMvYd7+C6L/2av9m4g/aeeNiliWQdBfoYdKjlMi7MjDVLp/PAR9/Mzctnctev9nDN/3mYHzx9SFeYiqRQoI9B15lZLmq5jIe6qlI+/45L+K8/uZzJ1WV8ZP3T3PTPj/HYrmNhlyaSFRToYzDQcqnUCH1cLZs9ie9/8Aq+8I5LaGnt5nfv3sQtd2/imYOnwi5NJFQK9DEYmOWieejjLxox3tU0iwc/dhV/dcNinj/Syo13Psp7v7GJx3YfUytGCpICfQw6Y31EI0aJptKFpqw4yh9d2cgv/+IqPrF6ETuOtPG7X9/ETf/8GD997gjxvoJbL04KmJq/Y9AZ66OiOIrZUMvdyHiqLivmA1fN431XzOV7TzbztV/u4Y+/+STTJpSxbuVs1q6YxeSasrDLFMkoBfoYdMbiVJSq3ZJNyoqjvGfVHN7dNItf7DjKtzbt54s/f5EvP/AS1y6ZyjubZnLl/HpdoCR5SYE+Bu09carLisMuQ4ZQFI2w+qKprL5oKnuPdXDPpv18d2szP952hPqqEm64ZDq/s2wGl8ycoL+wJG8o0MegrTtOVak+wmzXWF/Jp69fzMeuXcgvd7bw/acPcc8TB/h/j+1jbl0F1y6ZytsWT2HZ7ElEIwp3yV1KozFIjtD1EeaK0qIov7VkKr+1ZCqnu3r5ybYj/HjbEf710b187Vd7qK8q4ZpFU3jr4ilcNq9O/7OWnKPf2DFo744zVSfactKE8mLWrpzN2pWzae3u5eGdLfxs+8v8eNsRvrPlIEUR4/WzJnLlgnqunF/P0lkTKVbfXbKcAn0M2nvUcskHNWXFrFk6nTVLpxOLJ9iy7wSP7DrGo7uO8aUHXuIff/ESlSVRls+ZxPLZk7h0ziReP3siNTp/IllGaTQG7T1xqtRyySslRREun1/P5fPrATjVGeM3u4/z6O5jbN1/in968CUSDmawcEo1y2ZP4qIZNSyZPoFFU6spK9asJwmP0miU3D3ZQ9cIPa9NrCjhuouncd3F0wBo6+7lmYOn2br/JFsPnORHzx7m208cAJJXr85rqGTJ9AksmV7DhVOqmT+5imkTyjSTRsaF0miUOmN9uKMReoGpLitO9tUXJEfw7k7zyS62Hz7N9sOtbD/cymO7j/FfTx068zOVJVHmTa5iXkMV8/u/N9ZXMqu2XGvpS6D02zRKA+txV2qEXtDMjFm1FcyqrWD1RdPOPH6svYeXXmlnd0s7u44mvz++5/hZQQ9QX1XCzEnJn59dW86s/tvTJ5YzpaZUgS/nRb8to9TWnQx0nRSVodRXlVJfVcpl8+rOery9J87uo+3sP9HJwYGvk508c/AUP9l2hHji7EXFqsuKmFpTxtQJZUypKWNKTSlTa5K366tLqassobayhKrSIrV1RIE+Wq3dvQCa6SDnpaq0iKWzJrJ01sTXPBfvS3DkdDcHT3by8uluXm7t5pWB76097Dp6jKNtPfQlXruSZEk0Qm1/uNdVlbx6u7KESZUl1JQVU1NeTE1ZERPKB24XU1KkqZj5RIE+Sic7YgDUVpaEXInki6Jo5Ez7Zjh9Ced4ew8vt3ZzvD3G8Y4YJzp6kt/bY5zoSD62/7ILKmAAAAXfSURBVHgnJzpiI27VV1YceU3YV5UVU1UapaKkiIqS5PfK/vuVJVEqSvu/pz5eGqVcC9WFLq1AN7PVwJeAKHC3u//toOdLgX8HLgWOA+92933BlppdjivQJQTRiDG5piztlSO7e/s41dlLW3cvrd29tHbF+7/30tod53TXwO3kc8c7Yuw91kFnrI/OWB8dsTjns7R8aVGE0qIIZcVRSosjlBWd+3vpEPdLiiIUR4ziaITiogglUaMokrxdHO1/PJq8XRKNUJRyuzgaoaj/mJJohEiBLeUwYqCbWRS4E3gb0AxsNrMN7v58ymF/BJx09/lmthb4PPDuTBScLTRCl1xQVhxl6oQoUyeM7opmd6e7N0FHLE5nTzLgO2NxOnr6zv4e66OzJ05PPEFPPEF3b99rvnf3JjjV2Tvk87F4Ztatj0aMov7/OUQs+VdQNGJEzZLf+5+P9H+Ppn7Z2fdf83wkQtQgGom85jUiZkQjEBm4bdZ/G6JmXLVwMhfPnBD4f286I/SVwC533wNgZuuBG4HUQL8R+Ez/7fuAr5iZeQa2jbl380G+/us9Qb/seXvpaDvVZUXaIFrymplRXhJN7spVlbn3SSScWF8y4Hv7nN6+RP9X6u3B91Nux53eRILeePLxWF+C+KBjE+7EEwn6EtCX+t2T3+NnjnH6Ur5i8QTxRP9zKcckEmcf++oxCRKebI8lPPmVvP3qf29tVUlogT4DOJhyvxlYNdwx7h43s9NAHXDW7r1mditwK8Ds2bNHVfDEimIWTMngb1aaFkyp4rIL6tQzFAlAJGKURaJ5f6Vtoj/kM5Ub6QT6UO88eOSdzjG4+13AXQBNTU2jGr0PrJYnIpJrIhEjMmRcBvT6aRzTDMxKuT8TODzcMWZWBEwATgRRoIiIpCedQN8MLDCzRjMrAdYCGwYdswH4/f7b7wAezET/XEREhjdiy6W/J34bcD/JaYv/6u7bzewOYIu7bwC+AfyHme0iOTJfm8miRUTktdKah+7uG4GNgx67PeV2N/DOYEsTEZHzoet+RUTyhAJdRCRPKNBFRPKEAl1EJE9YWLMLzawF2B/KmwennkFXwxY4fR6v0mdxNn0eZxvL5zHH3RuGeiK0QM8HZrbF3ZvCriNb6PN4lT6Ls+nzOFumPg+1XERE8oQCXUQkTyjQx+ausAvIMvo8XqXP4mz6PM6Wkc9DPXQRkTyhEbqISJ5QoIuI5AkF+iiZ2Woz22lmu8zsk2HXExYzm2VmD5nZDjPbbmYfCbumbGBmUTN7ysx+FHYtYTOziWZ2n5m90P97clnYNYXFzP6s/9/Jc2b2bTMb3Wavw1Cgj0LKxtnXAYuBdWa2ONyqQhMH/tzdXwe8AfhgAX8WqT4C7Ai7iCzxJeCn7r4IWEqBfi5mNgP4MNDk7heRXI480KXGFeijc2bjbHePAQMbZxccdz/i7k/2324j+Y91RrhVhcvMZgLXA3eHXUvYzKwGeBPJPRNw95i7nwq3qlAVAeX9O7tV8Nrd38ZEgT46Q22cXdAhBmBmc4FlwKZwKwndPwIfBxJhF5IFLgBagP/b34K628wqwy4qDO5+CPh74ABwBDjt7j8L8j0U6KOT1qbYhcTMqoDvAX/q7q1h1xMWM7sBOOruW8OuJUsUAcuBr7r7MqADKMhzTmY2ieRf8o3AdKDSzG4J8j0U6KOTzsbZBcPMikmG+bfc/T/DridkVwBrzGwfyVbcW8zsm+GWFKpmoNndB/5qu49kwBeitwJ73b3F3XuB/wQuD/INFOijk87G2QXBzIxkf3SHu38x7HrC5u6fcveZ7j6X5O/Fg+4e6Cgsl7j7y8BBM1vY/9A1wPMhlhSmA8AbzKyi/9/NNQR8gjitPUXlbMNtnB1yWWG5AngvsM3Mnu5/7C/796EVAfgQ8K3+wc8e4H0h1xMKd99kZvcBT5KcHfYUAS8BoEv/RUTyhFouIiJ5QoEuIpInFOgiInlCgS4ikicU6CIieUKBLiKSJxToIiJ54v8DBGTNBkLTzD4AAAAASUVORK5CYII=" alt="" />

  ③、卡方分布

数理统计(二)——Python中的概率分布API  aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXyU9b3+/9c7CUmAsBNAIBBWERFQwy7q0VahraB1A/cVN1rbY3vU/npa9Zz2d1rbqkexlaqVCoqKGyqVWrVWWSIBAVkEwpKFNewEAtne3z8yHmMMZIAJ92Tmej4eyMx9f2ZyJZIrd+7tY+6OiIjEroSgA4iISP1S0YuIxDgVvYhIjFPRi4jEOBW9iEiMU9GLiMQ4Fb2ISIxT0YtEmJldYmYFZlZsZqcHnUdERS9yGGb2OzNbY2b7zOwLM7suzJf+Dpjo7mnu/ll9ZhQJR1LQAUSi2H7gImA1MAh418xy3X1uHa/rCiyv73Ai4dIWvcQ1M+thZjvN7IzQ845mtt3MznX3X7r7F+5e6e7ZwMfAsCO8V4qZFQOJwBIzW3tiPguRI1PRS1xz97XAvcA0M2sC/AV4zt3/WX2cmTWmaqv+sFvq7n7I3dNCTwe4e4/6SS1ydEw3NRMBM5sJdAMcGOTuh2qsnwK0B0Z7Hd80ZuZAL3fPra+8IkdDW/QiVf4M9AMer6XkHw6tu6KukheJRtqil7hnZmnAEuBDYDRwmrvvDK17ELgUOMfdd4T5ftqil6iiLXoReAxY6O63AO8AfwIws/uBq4Bvh1vyItFIRS9xzczGAqOA20OL/h04w8yuBn4NdAHWhC5+KjaznwUUVeSYadeNiEiM0xa9iEiMU9GLHCUzu7rarpzqf3Q1rEQl7boREYlxYd3rxsxGUXVmQiLwtLv/T431ZwOPAv2Bce4+o8b65sBK4HV3n3ikj9W2bVvPzMwM+xMQERFYuHDhdndPr21dnUVvZonAJODbQCGwwMxmuvuKasPygRuAnxzmbf4L+CicsJmZmeTk5IQzVEREQsws73DrwtlHPxjIdfd17l4KTAfGVh/g7hvcfSlQWcsHP5OqS8f/flSpRUQkIsIp+k5AQbXnhaFldTKzBOD3wE/rGDfBzHLMLKeoqCictxYRkTCFU/RWy7Jwj+DeCcxy94IjDXL3ye6e5e5Z6em17mISEZFjFM7B2EIgo9rzzsCmMN9/GDDSzO4E0oBkMyt29/uOLqaIiByrcIp+AdDLzLoBG4FxVN3/o07ufvWXj83sBiBLJS8icmLVuevG3cuBicBsqk6RfNndl5vZQ2Y2BsDMBplZIXA58JQuHBERiR5Rd8FUVlaW6/RKEZGjY2YL3T2rtnWaHFwkwtydvSXlbNpTwqbdJewoLuVAaTkHyiooLa+kUWICjRKNlKREWjdNpm1aCunNUujUsjGNkxODji8xSEUvcpx2Hyhl3todLC7YzYrNe1mxaS879pce9fuYQaeWjenZLo2T2zdjYEZLzujaivbNU+shtcQTFb3IMVi1ZR9vL93Eh6u2sXzTXtwhOTGB3h3SOP+UdvRq14yOLRvTsWUqbdNSaJqSRJPkRJITEyivdEorKjlYVsHO/aUU7TvEtn0Hyd9RQm5RMWu3FTM3dwelFVXXH3Zq2ZhhPdpw7snpjOyZTosmjQL+7KWhUdGLhGlH8SFeying9UUbWbOtmASDrK6t+dH5vRnRsw39O7ckOanuS1OSE4zkpATSUpJom5ZC7/bNvjHmUHkFyzftZVHeLhbm7eLvy7cwY2EhiQnGGV1a8t3TTuK7/TuS3iylPj5ViTE6GCtSh2Ub9/DsnPW8vWQzpRWVDMpsxUUDOjK630knrGjLKypZXLCbf64q4r0VW1m1dR8JBsN6tGHswE58r/9JNEnWdls8O9LBWBW9yGEs27iHR/+xmn+s3EbT5EQuPbMz1w7tSq9atsBPtNVb9/HWkk3MXLKJvB0HaJaSxPfP6MRVQ7pycofg88mJp6IXOQoFOw/w61kr+duyLbRo3IhbR3bj+uGZNEuNvn3j7k5O3i6mzc9j1udbKK2oZHBmayac3Z3z+rQjIaG2O5hILFLRi4ShpLSCP360lqc+WkuCGbed052bzupG8ygs+Nrs3F/KjIUFTJmbx8bdJfRun8aEs3swZkDHsI4dSMOmohepw/x1O/jpjCUU7CzhogEd+dl3+nBSi8ZBxzomZRWVvLN0M3/6aC1fbNlHxxap3HVeT67IyqBRogo/VqnoRQ7jYFkFv313Fc/OWU/XNk34n+/3Z1iPNkHHigh356PVRTz+QS4L83bRpXUT7j6/Fxef3olE7dKJOSp6kVqs3rqPO6YuZG3Rfq4f1pV7R/eJyTNX3J1/ri7i939fxbKNe+nZLo2fXngyF/Rtj5kKP1ao6EVqeOOzjdz/2uc0TUni0SsHclavtkFHqnfuzrvLtvD791aTu62YYd3b8IuL+nLKSc2DjiYRoKIXCSmrqOS/3l7BX+flMTizNU9cdTrt4uwWA+UVlbz4aT5/eG81e0rKuHJQF+65oDdt03TxVUOmohcB9h0s485pi/h4zXZuOasb947uE9cHJ/ccKOPR91fz/Lw8GjdK5J4LenPtsEztv2+gVPQS9zbtLuGm5xaQu62YX13SjysHdQk6UtTI3VbMg28t5+M12+nfuQW/vuQ0+nVqEXQsOUpHKvr43ZyRuLFm6z4ueXIOG3eV8NyNg1XyNfRsl8ZfbxrM/44/nU27DzLmiU946K0VFB8qDzqaRIiKXmLa8k17uHLyfCodXrljWFwcdD0WZsaYAR15/55zGD+4C8/OWc+3//ARH36xLehoEgEqeolZiwt2M37yfFKTEnj5tmH06aCzS+rSonEjfnXJabx6x3CapSZx43ML+OkrS9h7sCzoaHIcVPQSkz7L38U1T2fTskkyL902jG5tmwYdqUE5s2sr3vrBWdx5bg9eXVTIhY/8i49WFwUdS46Ril5izsrNe7n+2U9pk5bMy7cNI6N1k6AjNUgpSYn8x6g+vHbnCJqmJHH9s59y/2tL2aet+wYnrKI3s1FmtsrMcs3svlrWn21mi8ys3Mwuq7Z8oJnNM7PlZrbUzK6MZHiRmtZv38+1z3xKk+Qkpt48hA4t4usc+fowMKMlb//gLG47pzsvLShg1KMfk7NhZ9Cx5CjUWfRmlghMAkYDfYHxZta3xrB84AbghRrLDwDXufupwCjgUTNrebyhRWqzaXcJ1zydjbsz9ZYh2pKPoNRGidw/+hReuX04iQnGFU/N45H3VlMemu5Qols4W/SDgVx3X+fupcB0YGz1Ae6+wd2XApU1lq929zWhx5uAbUB6RJKLVLPvYBk3PbeAvSVlTLlpMD3bpQUdKSad2bUV7/zwLC4e2InH3l/DlZPnU7DzQNCxpA7hFH0noKDa88LQsqNiZoOBZGDt0b5W5EjKKyqZ+MJnrNlWzJPXnKGLfepZs9RG/OHKgTw2biCrt+zjO499zJuLNwYdS44gnKKv7Xroo7qc1sxOAp4HbnT3b/yuZ2YTzCzHzHKKinRkX8Ln7jzw1nI+Wl3Ef1/cj5G99AvjiTJ2YCdm3T2Skzs04+7pi/n3lxazXxdZRaVwir4QyKj2vDOwKdwPYGbNgXeAn7v7/NrGuPtkd89y96z0dH2jSvienbOBqfPzue3s7owfrCteT7SM1k2YPmEoP/pWL95YvJExT3zC6q37go4lNYRT9AuAXmbWzcySgXHAzHDePDT+deCv7v7KsccU+aa5udv51TsruKBve+4d1SfoOHErKTGBH32rN1NvHsKeknLGPPEJry4sDDqWVFNn0bt7OTARmA2sBF529+Vm9pCZjQEws0FmVghcDjxlZstDL78COBu4wcwWh/4MrJfPROLK5j0l/ODFz+jWtil/uHKgJsGOAsN7tmXWD89iQOeW3PPKEu6dsZSDZRVBxxJ090ppgA6VV3DlU/NZs3Ufb04cQc92zYKOJNWUV1Ty6D/W8MSHufTp0Iwnrz6D7uk6C6q+6e6VElP+++2VLC7YzcOXD1DJR6GkxAR+cuHJ/OXGQWzde5CLHv+Ed5ZuDjpWXFPRS4Py9tJNPD8/j9vO7s53Tjsp6DhyBP92cjve+eFIendoxl0vLOL//9tKXWAVEBW9NBiFuw5w/2ufc3qXlvzkwpODjiNh6NiyMS9NGMbVQ7rw1EfruOEvC9i1vzToWHFHRS8NQnlFJT+avhh3eOzK0+N6CsCGJjkpgV9dchq/vbQ/n67fyUVPfMKyjXuCjhVX9N0iDcKkD9eSk7eLX13Sjy5tdA+bhuiKQRm8fPswKiqdS/84l9c/0ymYJ4qKXqJezoadPPb+ar5/eifGDjzqu29IFBmY0ZK3fnAWAzNa8uOXlvDgW8sp0377eqeil6h2oLSce15ZQqdWjXlw7KlBx5EIaJuWwtRbhnDTiG78Zc4Grnk6m+3Fh4KOFdNU9BLVHp69irwdB3j4sgE0S20UdByJkEaJCfzior48euVAFhfsZuwTc1ixaW/QsWKWil6i1qfrd/Lc3A3cMDyTod3bBB1H6sHFp3dixu3Dqah0LvvTXN5dtiXoSDFJRS9RqaS0gp/OWEJGqyb8xyidShnLTuvcgpkTR9CrfTNun7qQx99fQ7Rdsd/QqeglKn25y+Y3l/anSXJS0HGknrVrnspLE4Zy8cCO/P691fxw+mLdJyeC9B0kUeez/F38Ze56rh3alWE9tMsmXqQ2SuSRKwfSu0Oz0A/6/Uy+Nkvz/kaAtuglqpRXVPKz15fRvlkq947WrYfjjZlx57k9mXxtFmu3FTPmiU9YXLA76FgNnopeospzczewcvNeHhjTl7QU/cIZr77dtz2v3jmc5KQErnhqnqYqPE4qeokam3aX8If3VnNen3ZceGqHoONIwPp0aM6bd41gYEZL7p6+mN+++wWVlTpIeyxU9BI1HnprBZXuPDjmVMw0kYhAm7QUpt48hPGDM3jyn2uZ+OIiSkp1kPZoqeglKry/civvLt/CD87rRUZr3ctGvpKclMCvLzmNn3/3FP62bAvjJs9j296DQcdqUFT0EriDZRU88NZyerZL49aR3YOOI1HIzLhlZHeeuuZMVm8t5uJJc1i5WVfShktFL4F7ds56CnaW8MBFp5KcpH+ScngXnNqBV24fRoU7l/1xLh9+sS3oSA2CvqskUNv2HmTSB7l865T2nNWrbdBxpAHo16kFb951Fpltm3LzlAU8N2d90JGinopeAvXw7FWUVlTy/333lKCjSAPSoUUqL982jPP6tOeBt1bwyzeXaZrCIwir6M1slJmtMrNcM7uvlvVnm9kiMys3s8tqrLvezNaE/lwfqeDS8H1euIcZiwq5cUQ3urVtGnQcaWCapiTx1LVncstZ3ZgyL49b/prDvoNlQceKSnUWvZklApOA0UBfYLyZ9a0xLB+4AXihxmtbA78EhgCDgV+aWavjjy0Nnbvz4FvLad0kmYnn9Qw6jjRQiQnGz7/Xl19fchofr9nO5X+ax8bdJUHHijrhbNEPBnLdfZ27lwLTgbHVB7j7BndfCtT83elC4D133+nuu4D3gFERyC0N3DufbyYnbxc/ufBkmus+83KcrhrSheduHMTG3SWMfWKObptQQzhF3wkoqPa8MLQsHGG91swmmFmOmeUUFRWF+dbSUJWWV/Lbd1fRp0MzrsjKCDqOxIiRvdJ57Y7hNE5O4Mqn5vHO0s1BR4oa4RR9bZcohnsdclivdffJ7p7l7lnp6elhvrU0VC9+mk/+zgPcN7oPiQm6AlYip1f7Zrx+5whO7dicu15YxKQPc3Vve8Ir+kKg+mZXZ2BTmO9/PK+VGFR8qJzHP1jDsO5tOKe3fqhL5LVNS+GFW4cyZkBHHp69ip+8spTS8vg+Iyecol8A9DKzbmaWDIwDZob5/rOBC8ysVegg7AWhZRKnnv54HduLS7l3dB/dz0bqTWqjRB4bN5C7z+/Fq4sKufaZbHYfKA06VmDqLHp3LwcmUlXQK4GX3X25mT1kZmMAzGyQmRUClwNPmdny0Gt3Av9F1Q+LBcBDoWUSh7YXH+LP/1rH6H4dGJjRMug4EuPMjB9/uzePXjmQz/J3c8mTc1m/fX/QsQJh0bb/Kisry3NycoKOIfXggZnLeX5+Hn//8dn0SE8LOo7EkQUbdnLb8wupdOdP15wZk5PNm9lCd8+qbZ2ujJUTIn/HAaZl53FFVoZKXk64QZmtef3O4bRpmsy1z2Tz6sLCoCOdUCp6OSEefX81iQnGj77VK+goEqe6tmnKa3eMYFBma+55ZQm/m70qbiYyUdFLvVtbVMwbn23kumGZtG+uiZ4lOC2aNGLKTYO5MiuDJz7M5QfTP+NgWexPZKJJOaXePf7+GlKSEplwtu41L8FrlJjA/1x6Gt3Tm/I/737Bxl0l/Pm6LNKbpQQdrd5oi17qVe62YmYu2cR1w7rSNi12v5GkYTEzbjunB3+8+ky+2LKXiyfNYfXWfUHHqjcqeqlX//v+GlIbaWteotOofh14+bZhlFVUcumTc/lodWzegkVFL/VmzdZ9vLV0E9cNy6SNtuYlSvXv3JI37hpBp1aNuem5BTw/Py/oSBGnopd689j7a2iirXlpADq2bMyMO4ZzTu90/vONZTz01goqYuiMHBW91IvVW/fxzuebuX54Jq2bJgcdR6ROaSlJ/Pm6LG4ckcmzc9Zz2/M57D9UHnSsiFDRS7343/fX0DQ5iVtHamteGo7EBOOXF53KQ2NP5YMvtnH5n+axeU/Dn8hERS8Rt377fmZ9vplrhnallbbmpQG6blgmz94wiPydB7h40hw+L9wTdKTjoqKXiHvqo7U0Skzg5rO6BR1F5Jide3I7ZtwxjKSEBK54ah5/X74l6EjHTEUvEbV5TwmvLirkiqyMmL4AReJDnw7Nef2u4fTu0Izbpi7kz/9a1yAnMlHRS0Q9/fF6Kh2daSMxo12zVF6aMJTv9DuJX81ayc9eX0ZZRcOayES3QJCI2bm/lBey8xk7oCMZrZsEHUckYlIbJfL4+NPJbNuESR+upWDnASZdfQYtGjeMie21RS8R89yc9ZSUVXDHuT2CjiIScQkJxk8v7MPDl/Une/0OLv3jXAp2Hgg6VlhU9BIRxYfKeW7uBi7o255e7ZsFHUek3lyelcFfbxpC0b5DXDxpDgvzon/SPBW9RMS0+XnsPVjOnf/WM+goIvVuWI82vH7ncJqlJjH+z9m8uXhj0JGOSEUvx+1gWQVPf7KeET3baC5YiRvd09N4/c4RnJ7RkrunL+bh2V9E7UQmKno5bm8u3kjRvkPccY625iW+tGqazPM3D2H84C5M+nAtE55fSHEU3jYhrKI3s1FmtsrMcs3svlrWp5jZS6H12WaWGVreyMymmNnnZrbSzO6PbHwJmrvz9Mfr6dOhGSN6xt6EyyJ1SU5K4NeX9OPBMafy4aptXPpk9B2krbPozSwRmASMBvoC482sb41hNwO73L0n8Ajwm9Dyy4EUdz8NOBO47csfAhIb/rm6iDXbirl1ZHfMLOg4IoEwM64fnslfbxrMlr0HGfPEJ8xbuyPoWP8nnC36wUCuu69z91JgOjC2xpixwJTQ4xnA+Vb1Xe9AUzNLAhoDpcDeiCSXqPD0x+to3zyFiwZ0DDqKSOBG9GzLm3eNoE1aCtc+k83UKLm3fThF3wkoqPa8MLSs1jHuXg7sAdpQVfr7gc1APvA7d//GuUhmNsHMcswsp6goNmd4iUXLN+1hTu4ObhjejeQkHe4RAchs25TX7hzOyF5t+fkby/jPN4K/kjac787afh+veWj5cGMGAxVAR6AbcI+ZfePaeHef7O5Z7p6Vnp4eRiSJBs98vJ4myYlcNbhL0FFEokrz1EY8ff0gbjunO8/Pz+O6Zz5l1/7SwPKEU/SFQEa1552BTYcbE9pN0wLYCVwFvOvuZe6+DZgDZB1vaAnelj0HmblkE1dkZdCiScO4DFzkREpMMO4ffQp/uGIAC/N3MWbSJ4FNQB5O0S8AeplZNzNLBsYBM2uMmQlcH3p8GfCBV93iLR84z6o0BYYCX0QmugTpubkbqHTXrYhF6vD9Mzrz0oShHCyr5JJJc/jHiq0nPEOdRR/a5z4RmA2sBF529+Vm9pCZjQkNewZoY2a5wL8DX56COQlIA5ZR9QPjL+6+NMKfg5xgxYfKeSE7j1H9OujmZSJhOL1LK2ZOHEH39DRufT6Hx99fc0Ivrgrr7pXuPguYVWPZL6o9PkjVqZQ1X1dc23Jp2F5eUMDeg+XcomkCRcJ2UovGvHL7MO59dSm/f281yzft5XdXDCAtpf5vIqxTJeSoVFQ6f5m7njO7tuKMLq2CjiPSoKQ2SuTRKwfy8++ewt9XbOGSSXNYv31/vX9cFb0clfdXbqVgZ4n2zYscIzPjlpHdmXrzELYXH2LME5/w4apt9foxVfRyVKbM28BJLVK5oG/7oKOINGjDe7Zl5sSzyGjVhJueW8CkD3PrbZpCFb2EbfXWfczJ3cE1Q7uSlKh/OiLHK6N1E169YzhjBnTk4dmruHPaono5SKupBCVsU+ZuIDkpgfG6QEokYhonV+23P61TC/YeLCchIfL3jFLRS1j2HCjjtUUbGTugI62bJgcdRySmfLnfvr7o928JyysLCygpq+D64ZlBRxGRo6SilzpVVDpT5m1gUGYr+nVqEXQcETlKKnqp04dfbKNgZwk3DNcplSINkYpe6vTc3A10aJ7KBafqlEqRhkhFL0eUu20fn+Ru59phXWmkUypFGiR958oRTZmbR3JSAuMGZdQ9WESikopeDmvvwTJeXVTImAEdaZOWEnQcETlGKno5rBk5hRworeAGnVIp0qCp6KVW7s607DxO79JSp1SKNHAqeqlV9vqdrC3az9VDugYdRUSOk4peajUtO5/mqUl8r/9JQUcRkeOkopdv2F58iHeXbeayMzNIbZQYdBwROU4qevmGV3IKKatwrhqiu1SKxAIVvXxNZaXzwqd5DO3emp7t0oKOIyIREFbRm9koM1tlZrlmdl8t61PM7KXQ+mwzy6y2rr+ZzTOz5Wb2uZmlRi6+RNrHudsp2Fmig7AiMaTOojezRGASMBroC4w3s741ht0M7HL3nsAjwG9Cr00CpgK3u/upwLlAWcTSS8RNm59Hm6bJXHhqh6CjiEiEhLNFPxjIdfd17l4KTAfG1hgzFpgSejwDON/MDLgAWOruSwDcfYe7V0QmukTa5j0lvP/FNq4YlEFykvbqicSKcL6bOwEF1Z4XhpbVOsbdy4E9QBugN+BmNtvMFpnZf9T2AcxsgpnlmFlOUVHR0X4OEiEvLSig0p3xg3QQViSWhFP0tU1gWHP22sONSQLOAq4O/X2JmZ3/jYHuk909y92z0tPTw4gkkVZeUcn0Tws4u1c6Xdo0CTqOiERQOEVfCFS/dWFnYNPhxoT2y7cAdoaWf+Tu2939ADALOON4Q0vkffDFNrbsPcjVOqVSJOaEU/QLgF5m1s3MkoFxwMwaY2YC14ceXwZ84O4OzAb6m1mT0A+Ac4AVkYkukTQtO58OzVM5r0+7oKOISIQl1TXA3cvNbCJVpZ0IPOvuy83sISDH3WcCzwDPm1kuVVvy40Kv3WVmf6Dqh4UDs9z9nXr6XOQY5e84wL/WFHH3+b1I0uQiIjGnzqIHcPdZVO12qb7sF9UeHwQuP8xrp1J1iqVEqRcX5JNgxjgdhBWJSdp8i3Ol5ZW8vKCA8/u0o0MLXcsmEotU9HFu9vIt7NhfytVDdSWsSKxS0ce5adl5ZLRuzMiebYOOIiL1REUfx3K3FTN/3U6uGtyVhITaLoUQkVigoo9jL2Tn0yjRuDyrc9BRRKQeqejj1MGyCmYsLGBUv5Nom5YSdBwRqUcq+jj19tLN7D1YrithReKAij5OTcvOo0d6U4Z0ax10FBGpZyr6OLR80x4+y9/N1UO6UnU3aRGJZSr6OPRCdj4pSQlceoYOworEAxV9nCk+VM4bn23kogEdadGkUdBxROQEUNHHmTcXb2R/aYUOworEERV9HHF3ps7Pp+9JzRmY0TLoOCJygqjo48jigt2s3LyXq4d20UFYkTiioo8j07LzaZqcyNiBNaf8FZFYpqKPE3sOlPHWkk1cfHon0lLCmoZARGKEij5OvLqokEPllVw9RLcjFok3Kvo44O5My85jYEZL+nZsHnQcETnBVPRxIHv9TtYW7dcplSJxSkUfB6bOz6N5ahLf698x6CgiEoCwit7MRpnZKjPLNbP7almfYmYvhdZnm1lmjfVdzKzYzH4SmdgSrqJ9h5i9fAuXnZlB4+TEoOOISADqLHozSwQmAaOBvsB4M+tbY9jNwC537wk8AvymxvpHgL8df1w5Wi/nFFBW4Vyl3TYicSucLfrBQK67r3P3UmA6MLbGmLHAlNDjGcD5Froix8wuBtYByyMTWcJVUem8+Gk+w7q3oWe7tKDjiEhAwin6TkBBteeFoWW1jnH3cmAP0MbMmgL3Ag8e6QOY2QQzyzGznKKionCzSx3+tbqIwl0lXD1UW/Mi8Sycoq/tWnkPc8yDwCPuXnykD+Duk909y92z0tPTw4gk4ZiWnUfbtBQu6Nsh6CgiEqBwLpEsBDKqPe8MbDrMmEIzSwJaADuBIcBlZvZboCVQaWYH3f2J404uR7RxdwkffLGNO87tQXKSTq4SiWfhFP0CoJeZdQM2AuOAq2qMmQlcD8wDLgM+cHcHRn45wMweAIpV8ifG9E/zcWD8YO22EYl3dRa9u5eb2URgNpAIPOvuy83sISDH3WcCzwDPm1kuVVvy4+oztBxZWUUl0xcUcN7J7ejcqknQcUQkYGHd3crdZwGzaiz7RbXHB4HL63iPB44hnxyD91ZspWjfIR2EFRFAV8bGpKnz8+jUsjHn9G4XdBQRiQIq+hiztqiYuWt3cNWQLiQmaHIREVHRx5wXsvNJSjCuyMqoe7CIxAUVfQw5WFbBjIWFXNivA+nNUoKOIyJRQkUfQ95eupk9JWVco8lFRKQaFX0MmTo/jx7pTRnavXXQUUQkiqjoY8SSgt0sLtjNtUO7ErqfnIgIoKKPGVPmbqBpciKXntk56CgiEmVU9Nub0/AAAAnESURBVDFge/Eh3l66mcvO7Eyz1EZBxxGRKKOijwEvZudTWlHJdcMzg44iIlFIRd/AlVVUMjU7j5G92tIjXZOLiMg3qegbuNnLt7B17yFu0Na8iByGir6BmzJ3A11aN+Hck3VfGxGpnYq+AVu2cQ8LNuziumFddV8bETksFX0DNmXuBho3SuRy3ddGRI5ARd9A7dxfyptLNvH9MzrRorFOqRSRw1PRN1DT5udRWl7J9ToIKyJ1UNE3QAfLKpgyL49zT06nd/tmQccRkSinom+A3ly8ke3Fh7h1ZPego4hIA6Cib2AqK50/f7yevic1Z3iPNkHHEZEGQEXfwHy0uojcbcXcenY33aVSRMISVtGb2SgzW2VmuWZ2Xy3rU8zspdD6bDPLDC3/tpktNLPPQ3+fF9n48Wfyv9bRoXkq3+vfMegoItJA1Fn0ZpYITAJGA32B8WbWt8awm4Fd7t4TeAT4TWj5duAidz8NuB54PlLB49GyjXuYt24HN47IpFGifhkTkfCE0xaDgVx3X+fupcB0YGyNMWOBKaHHM4Dzzczc/TN33xRavhxINTNNZnqM/vzxOtJSkhg/pEvQUUSkAQmn6DsBBdWeF4aW1TrG3cuBPUDNI4WXAp+5+6GaH8DMJphZjpnlFBUVhZs9ruTvOMDbSzczblAGzXXPeRE5CuEUfW1H/PxoxpjZqVTtzrmttg/g7pPdPcvds9LT08OIFH/++NFaEs249WydUikiRyecoi8Eqt9MpTOw6XBjzCwJaAHsDD3vDLwOXOfua483cDzavKeEGQsLuGJQZ9o3Tw06jog0MOEU/QKgl5l1M7NkYBwws8aYmVQdbAW4DPjA3d3MWgLvAPe7+5xIhY43T320Dne47eweQUcRkQaozqIP7XOfCMwGVgIvu/tyM3vIzMaEhj0DtDGzXODfgS9PwZwI9AT+08wWh/7oxulHoWjfIV78NJ9LTu9ERusmQccRkQYoKZxB7j4LmFVj2S+qPT4IXF7L6/4b+O/jzBjXnvlkPWUVldxxrrbmReTY6GTsKLaj+BDPz9vAd/t3pLvmgxWRY6Sij2JP/nMtJWUV3H1+r6CjiEgDpqKPUpt2l/D8/DwuPaMzPdtpa15Ejp2KPkr97/trwOHub2lrXkSOj4o+Cq0rKuaVhYVcNaQLnVvpTBsROT4q+ij0+7+vJiUpgbv+rWfQUUQkBqjoo0z2uh288/lmJpzdnfRmuv+biBw/FX0Uqah0HnxrBR1bpOoqWBGJGBV9FHk5p4AVm/dy/3dOoXFyYtBxRCRGqOijxJ4DZfxu9ioGZbbie/1PCjqOiMQQFX2U+NWsFewuKeOXF52quWBFJKJU9FFgTu52Xs4p5NaR3enXqUXQcUQkxqjoA1ZSWsH9r31OZpsm/EgXR4lIPQjr7pVSfx56ewX5Ow/w4q1DSW2kA7AiEnnaog/QrM838+Kn+dx+Tg+G9ag5xa6ISGSo6AOSv+MA9726lAEZLbnngt5BxxGRGKaiD8Deg2XcNGUBCQnG4+NOp1Gi/jeISP1Rw5xgpeWV3DVtEXk79vOna86kSxvdtExE6pcOxp5Ah8oruGvaIj5es53fXtafod21X15E6p+K/gTZc6CMiS9Wlfx/XdyPK7Iygo4kInEirF03ZjbKzFaZWa6Z3VfL+hQzeym0PtvMMqutuz+0fJWZXRi56A3HovxdXPzkHOav28FvL+3PtUO7Bh1JROJInVv0ZpYITAK+DRQCC8xspruvqDbsZmCXu/c0s3HAb4ArzawvMA44FegI/MPMert7RaQ/kWhTWeksKdzNX+fl8cbijXRonsoLtw5lUGbroKOJSJwJZ9fNYCDX3dcBmNl0YCxQvejHAg+EHs8AnrCqG7aMBaa7+yFgvZnlht5vXmTif2X3gVIu+9M83B0A/7//VP31teWAO3jomTtf+5vQ+Opjq17r1R5XH//V+3y56GBZBQdKK2iSnMgtZ3Xj7m/1Ji1Fe8pE5MQLp3k6AQXVnhcCQw43xt3LzWwP0Ca0fH6N13aq+QHMbAIwAaBLly7hZv+axATj5PbNQm/41V9f3iCs6nHty78ab18bQ+g1Fnpm9tV7UGOs1XiPxASjf+cWnNenPS0aNzqmz0lEJBLCKfrabqXoYY4J57W4+2RgMkBWVtY31oejWWojJl19xrG8VEQkpoVzMLYQqH6KSGdg0+HGmFkS0ALYGeZrRUSkHoVT9AuAXmbWzcySqTq4OrPGmJnA9aHHlwEfeNVO8ZnAuNBZOd2AXsCnkYkuIiLhqHPXTWif+0RgNpAIPOvuy83sISDH3WcCzwDPhw627qTqhwGhcS9TdeC2HLgrHs64ERGJJuZ+TLvE601WVpbn5OQEHUNEpEExs4XunlXbOt3rRkQkxqnoRURinIpeRCTGqehFRGJc1B2MNbMiIC/oHMepLbA96BBRRF+Pr9PX4yv6Wnzd8Xw9urp7em0roq7oY4GZ5Rzu6Hc80tfj6/T1+Iq+Fl9XX18P7boREYlxKnoRkRinoq8fk4MOEGX09fg6fT2+oq/F19XL10P76EVEYpy26EVEYpyKXkQkxqnoI6yuidTjiZllmNmHZrbSzJab2d1BZwqamSWa2Wdm9nbQWYJmZi3NbIaZfRH6NzIs6ExBMrMfh75PlpnZi2aWGqn3VtFHULWJ1EcDfYHxoQnS41U5cI+7nwIMBe6K868HwN3AyqBDRInHgHfdvQ8wgDj+uphZJ+CHQJa796PqlvDjIvX+KvrI+r+J1N29FPhyIvW45O6b3X1R6PE+qr6RvzFncLwws87Ad4Gng84SNDNrDpxN1VwWuHupu+8ONlXgkoDGoVn6mhDB2fhU9JFV20TqcVts1ZlZJnA6kB1skkA9CvwHUBl0kCjQHSgC/hLalfW0mTUNOlRQ3H0j8DsgH9gM7HH3v0fq/VX0kRXWZOjxxszSgFeBH7n73qDzBMHMvgdsc/eFQWeJEknAGcAf3f10YD8Qt8e0zKwVVb/9dwM6Ak3N7JpIvb+KPrI0GXoNZtaIqpKf5u6vBZ0nQCOAMWa2gapdeueZ2dRgIwWqECh09y9/w5tBVfHHq28B6929yN3LgNeA4ZF6cxV9ZIUzkXrcMDOjah/sSnf/Q9B5guTu97t7Z3fPpOrfxQfuHrEttobG3bcABWZ2cmjR+VTNLR2v8oGhZtYk9H1zPhE8OF3n5OASvsNNpB5wrCCNAK4FPjezxaFlP3P3WQFmkujxA2BaaKNoHXBjwHkC4+7ZZjYDWETV2WqfEcHbIegWCCIiMU67bkREYpyKXkQkxqnoRURinIpeRCTGqehFRGKcil5EJMap6EVEYtz/AylyBAYLF2TGAAAAAElFTkSuQmCC" alt="" />

  ④、伽马分布

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXiU5b3/8feXJUAgrAmLBAgIBBARJAKuta64VDxtrdDijvRXtXVttdqjre3p5fG0Vakel1oVFERcWlGxblj3JWERJGwBAwlrQiCQELJ+f39k8MSYwAATnpnJ53VdXMxyZ/IZCR9v7nnu5zF3R0REYl+LoAOIiEhkqNBFROKECl1EJE6o0EVE4oQKXUQkTqjQRUTihApdRCROtAo6gIjUMjMHdgN7N4dUuXvnACNJjDFtLBKJDqFCH+TuOUFnkdikJReJKmZ2rJktMrNdZva8mT1nZn8wsy5m9qqZFZjZ9tDt1Dpf9+/QuI/NrMTMXjGzbmY208x2mlmmmaXVGe9mdo2ZrQ59r9+b2ZFm9klo/BwzSwiNPdXM8s3sV2a21cw2mdmFZnauma0ysyIzu73Oa48Jvc6O0NgH976WSFNSoUvUCJXeP4CngK7As8B/hJ5uATwJ9AP6AmXAg/VeYiJwCdAbOBL4JPQ1XYHlwF31xo8HRgPjgF8BjwE/AfoAw4FJdcb2BNqGXvtO4G/A5NDXnwzcaWYDQmOrgRuBZOB44HTgmgP6jyFyEFToEk3GUfu5zjR3r3T3l4DPAdx9m7u/6O673X0X8F/Ad+p9/ZPuvsbdi4HXgTXu/ra7VwHPA6Pqjf9vd9/p7suAL4E33X1tna+vO74S+C93rwRmU1vWD7j7rtDXLwNGhLIucPdP3b3K3XOBRxvI2piFoZn9DjObFubXiAD6UFSiyxHABv/mBzt5AGaWCNxH7ay6S+i5JDNr6e7Voftb6nxdWQP3O9T7fvsb37PO/W11vk9ZI1/fIZR1MPAXIANIpPbv2YL6b7YRx2oNXQ6WZugSTTYBvc3M6jzWJ/T7zUA6MNbdOwKnhB6vOzZaPAysoPYDzo7A7URnTokzKnSJJp9Qu/58nZm1MrMJwJjQc0nUzoJ3mFlXvr0eHk2SgJ1AiZkNAX4WcB5pJlToEjXcvQL4PnAVsIPaDx1fBcqB+4F2QCHwKfCvgGKG4xbgx8Auaj88fS7YONJc6Dh0iWpm9hnwiLs/GXQWkWinGbpEFTP7jpn1DC25XEbtkSPRPBsXiRo6ykWiTTowh9ojRtYAP3T3TcFGigwzO5nawyG/xd3rH4EjcsC05CIiEie05CIiEicCW3JJTk72tLS0oL69iEhMWrBgQaG7pzT03H4L3cyeAM4Htrr78AaeN+AB4FxqT/15ubsv3N/rpqWlkZWVtb9hIiJSh5mta+y5cJZcnqJ2u3VjzgEGhX5NpXaXnIiIHGb7LXR3fx8o2seQCcAMr/Up0NnMekUqoIiIhCcSH4r2JnQCpZD80GPfYmZTzSzLzLIKCgoi8K1FRGSvSBR6QycdavBYSHd/zN0z3D0jJaXBNX0RETlIkSj0fP7vjHgAqcDGCLyuiIgcgEgU+lzgUqs1DiiOl519IiKxJJzDFp8FTgWSzSyf2tOWtgZw90eAedQesphD7WGLVzRVWBERadx+C93dJ+3neQeujVgiEZE4U1JeRW5hKWsLS/mqoJTThnTn6NROEf8+OjmXiEiEFJaUs3LzLlZu3sXqrSWsLSjhq8JStu4q/3qMGXTrkKBCFxGJBmUV1SzfvJNVm3exYvMuVm2pLfFtpRVfj+mS2JoBKR04ZXAK/ZPbc2RKe/ond6Bft0Tatm7ZJLlU6CIi+1BeVc3Kzbv4Ir+Ypfk7WJJfzOqtJVTX1B6d3a51Swb3TOL0od1J79mR9B5JpPdMIrlDAt+8PG7TU6GLiNSxqbiMzNztZOUWsWj9DlZs3klldW15d0lszdGpnTljaA+G9+7EsF4dSe3SjhYtouMa4Cp0EWm2amqcnIISPv+qiKzcIjJzt7NhRxkA7RNackyfzlx10gBGpHbi6N6dSO3S7rDPug+ECl1EmpVNxWV8sLqQj3JqfxWW1K57pyS1YUxaV6ac3J/j0roypGcSrVrG1iUjVOgiEtf2VFbz8ZpC3l9VyAerC1hTUApAcoc2nDQwmRMGJjO2f1f6dk2M6tl3OFToIhJ3CnaVM3/FFt5evpUPVhewp7KGtq1bMLZ/NyaN6cuJA5MZ0jMp5gu8PhW6iMSF3MJSXlu6ibeXb2Fx3g7coXfndlyc0YfTh/Zg7ICutGnVNIcLRgsVuojErA07ynhtyUZe+WITSzcUAzAitRM3njGYM4b2YGiv+JuF74sKXURiyvbSCuZ+sZFXvthI1rrtQG2J337uEM4bcQS9O7cLOGFwVOgiEvWqa5z3VxfwQlY+b2VvoaK6hiE9k/jl2emcd3Qv0pLbBx0xKqjQRSRq5RaW8vyCPF5csIHNO/fQtX0Ck8f146KMVIb26hh0vKijQheRqFJT47y3qoCnPs7lvVUFtDA4Nb07v71gGKcN6UFCq9g6NvxwUqGLSFQoLqvk+aw8nv50Heu27aZ7UhtuPGMwE8f0oUfHtkHHiwkqdBEJVF7Rbv72wVqez8qnrLKajH5duOWsdM4+qqdm4wdIhS4igVixeSeP/HsNryzZRAuDCSN7c/kJaQzvHfnzhDcXKnQROayycov433+vYf6KrbRPaMmVJ6Zx5Un96dWp+R5uGCkqdBE5LBau385f3lzFhzmFdGufwM1nDuaS4/vROTEh6GhxQ4UuIk3qyw3F/OWtVcxfsZVu7RP4zXlD+cnYfrRLiO9t+EFQoYtIk8jZWsKf31zJ619uplO71vzy7HQuPyGN9m1UO01F/2VFJKKKSit44O1VPPPZetq1bsn1pw/iqpP707Ft66CjxT0VuohERHlVNdM/zuWv83MoLa/ix2P7csMZg0nu0CboaM2GCl1EDom782b2Fv7wWjZ5RWWcmp7C7ecOZXCPpKCjNTsqdBE5aHlFu7lr7jLmr9jK4B4dmHHlGE4ZnBJ0rGZLhS4iB6y8qpq/vb+Wv87PoWUL445zh3L5iWm0jrFrcMYbFbqIHJBP1mzjjn8uZW1BKece3ZP/PH+YNgVFCRW6iISlpLyKe15fzjOfrqdv10SevOI4vpvePehYUocKXUT268PVhdz64hI2Fpcx5aT+3HxWujYGRSEVuog0ateeSv44bznPfp7HgJT2vPD/jmd0v65Bx5JGqNBFpEGZuUXcMHsxm4rL+Ol3BnDjGYNp21qz8mimQheRb6iqrmHa/BwenL+a1C6JvPCzEzi2b5egY0kYwjrGyMzGm9lKM8sxs9saeL6vmb1rZovMbImZnRv5qCLS1PKKdvOjRz9h2jur+Y9Rqcy7/mSVeQzZ7wzdzFoCDwFnAvlAppnNdffsOsN+A8xx94fNbBgwD0hrgrwi0kReXryBO/7xJQZMmzSKC445IuhIcoDCWXIZA+S4+1oAM5sNTADqFroDey/B3QnYGMmQItJ0yquq+f2r2Tzz6XpG9+vC/RePpE/XxKBjyUEIp9B7A3l17ucDY+uN+S3wppn9HGgPnNHQC5nZVGAqQN++fQ80q4hEWP723Vw7cyFf5Bcz9ZQB/PLsdO32jGHh/MlZA495vfuTgKfcPRU4F3jazL712u7+mLtnuHtGSorO9yASpH+v3Mr5f/2QtQWlPDJ5NLefO1RlHuPCmaHnA33q3E/l20sqVwHjAdz9EzNrCyQDWyMRUkQip6bGmTZ/NQ+8s5r0Hkk8PHk0/ZPbBx1LIiCc/x1nAoPMrL+ZJQATgbn1xqwHTgcws6FAW6AgkkFF5NDtrqji2lkLuf/t1fzHqN7845oTVeZxZL8zdHevMrPrgDeAlsAT7r7MzO4Gstx9LnAz8Dczu5Ha5ZjL3b3+soyIBGjDjjKunp7Fis07+c15Q7nqpP6YNbSiKrEqrI1F7j6P2kMR6z52Z53b2cCJkY0mIpGyYN12fvr0Asorq/n75TqpVrzSTlGROPfSwnxue3EpR3Ruy+ypYxnYXVcSilcqdJE45e48OD+HP7+1ihOO7Mb//uRYOicmBB1LmpAKXSQOVVXX8J8vL+PZz9fz/WN7c8/3R5DQSockxjsVukic2V1Rxc9nLeKdFVu59rtHcstZ6frws5lQoYvEkcKScq6ansXS/B384cLhTB7XL+hIchip0EXiRP723Vzy98/ZVFzGo5dkcOawHkFHksNMhS4SB9YWlDD58c8oKa9i5pRxjO6nU942Ryp0kRiXvXEnlz7xGe7w7NRxHHVEp6AjSUBU6CIxbOH67Vz+xOe0b9OKZ6aM5ciUDkFHkgCp0EVi1Mc5hUyZkUVKUhtmThlLahedw7y5U6GLxKAPVhcwZXoW/bol8sxVY+nesW3QkSQKqNBFYsyHqwuZMj2L/sntmXX1OLq21+5PqaWtYyIx5KOcQq6anqkylwap0EVixMdr/q/MZ04ZqzKXb1Ghi8SAT9Zs48qnMunXtbbMu3VoE3QkiUIqdJEol5VbxJVPZdKnSyIzr1aZS+NU6CJRbNnGYq54KpNendoy6+pxJKvMZR9U6CJRam1BCZf+/XOS2rTi6SljSUlSmcu+qdBFotCGHWVMfvwzAJ6ZMpbendsFnEhigY5DF4kyhSXlXPL4Z+wqr+LZq8cxQNv5JUyaoYtEkeKySi79++dsLC7jycuPY3hvnWhLwqdCF4kS5VXVTJ2Rxeqtu3hk8mgy0roGHUlijJZcRKJATY1z85wv+OyrIh6YOJJT07sHHUlikGboIlHgnn+t4NUlm7jtnCFMGNk76DgSo1ToIgF78qOveOz9tVx6fD9+esqAoONIDFOhiwToX19u4u5XszlrWA/u+t5RmFnQkSSGqdBFApKVW8T1sxczqk9npk0aRcsWKnM5NCp0kQDkFpYyZUYWR3Rux+OXHUfb1i2DjiRxQIUucpgVl1Vy1fRMDHjqiuN0GlyJGB22KHIYVVXXcN2shawv2s0zV42lX7f2QUeSOKJCFzmM7n41mw9WF3LvD0YwdkC3oONInNGSi8hhMuOTXGZ8so6ppwzgR8f1CTqOxKGwCt3MxpvZSjPLMbPbGhnzIzPLNrNlZjYrsjFFYtsHqwv43SvZnD6kO7eOHxJ0HIlT+11yMbOWwEPAmUA+kGlmc909u86YQcCvgRPdfbuZad+ySEjO1hKumbmQQd078IAOT5QmFM4MfQyQ4+5r3b0CmA1MqDfmauAhd98O4O5bIxtTJDYVl1UyZXombVq14PHLMujQRh9bSdMJp9B7A3l17ueHHqtrMDDYzD4ys0/NbHxDL2RmU80sy8yyCgoKDi6xSIyoqXFumL2I/O1lPDx5NKldEoOOJHEunEJv6N+HXu9+K2AQcCowCXjczDp/64vcH3P3DHfPSElJOdCsIjHl/rdX8e7KAu763jCO06lw5TAIp9DzgbofyacCGxsY87K7V7r7V8BKagtepFl6c9lmps3P4aLRqUwe1y/oONJMhFPomcAgM+tvZgnARGBuvTH/BL4LYGbJ1C7BrI1kUJFYkbO1hJvmfMGI1E78/sLhOuGWHDb7LXR3rwKuA94AlgNz3H2Zmd1tZheEhr0BbDOzbOBd4Jfuvq2pQotEq117Kpn6dBZtWrXgkcmjdY4WOazC+sjd3ecB8+o9dmed2w7cFPol0izV1Dg3zfmCddtqt/Uf0bld0JGkmdFOUZEIefDdHN7K3sId5w7l+CO1rV8OPxW6SAR8sLqA+95exYUjj+CKE9OCjiPNlApd5BBtLt7DDbMXMzClA3/8/tH6EFQCo0IXOQSV1TX8/NmFlFVW8/DkY0lM0E5QCY5++kQOwZ/eXElm7nYemDiSgd2Tgo4jzZxm6CIH6a3sLTz63lp+MrYvE0bWPxuGyOGnQhc5CHlFu7l5zmKG9+7If54/LOg4IoAKXeSAlVdVc+2shTjwvz/W5iGJHlpDFzlAf3xtOUvyi3lk8mj6dtMZFCV6aIYucgBeXbKR6Z+sY8pJ/Rk/vGfQcUS+QYUuEqa8ot38+sWljOrbmVvP0WXkJPqo0EXCUHu8+SIwmDZxFK1b6q+ORB+toYuE4b63VrE4bwcP/fhY+nTVurlEJ00zRPbjo5xCHn5vDROP68N5I3oFHUekUSp0kX3YVlLODc8t5siUDtz1vaOCjiOyT1pyEWlETY1zy/NfUFxWyYwrx9AuQcebS3TTDF2kEU9+nMu7Kwv4zXlDGdqrY9BxRPZLhS7SgC83FHPP68s5c1gPLtFFniVGqNBF6iktr+Lnzy4iuUMb7v3BCJ3fXGKG1tBF6rnz5WWs21bKrKvH0aV9QtBxRMKmGbpIHS8v3sCLC/O57rRBjBug64JKbFGhi4Rs2FHGb/75JaP7deEXpw0MOo7IAVOhi1B7iOLNcxZTU+Pc96ORtNLWfolB+qkVAR7/cC2fri3irguO0ilxJWap0KXZy964k/95YyXjj+rJRaNTg44jctBU6NKs7ams5obnFtElMYE/fv9oHaIoMU2HLUqzdu+/VrJqSwnTrxxDVx2iKDFOM3Rptj5YXcATH33F5Sek8Z3BKUHHETlkKnRplraXVnDL818wsHsHbtPVhyROqNCl2XF37vjnUopKK7j/4pG0ba2zKEp8UKFLs/PSwg3MW7qZm85MZ3jvTkHHEYmYsArdzMab2UozyzGz2/Yx7odm5maWEbmIIpGTV7Sbu+YuY0z/rkw9ZUDQcUQiar+FbmYtgYeAc4BhwCQzG9bAuCTgF8BnkQ4pEgnVNc6Nzy3GgL/86BhattAhihJfwpmhjwFy3H2tu1cAs4EJDYz7PXAvsCeC+UQi5pH31pC1bju/v3A4qV20G1TiTziF3hvIq3M/P/TY18xsFNDH3V/d1wuZ2VQzyzKzrIKCggMOK3KwluYXc99bqzh/RC8mjDwi6DgiTSKcQm/o36X+9ZNmLYD7gJv390Lu/pi7Z7h7RkqKjvuVw6Osoprrn1tESlIb/utC7QaV+BVOoecDfercTwU21rmfBAwH/m1mucA4YK4+GJVo8cd5y1lbUMqfLzqGTomtg44j0mTCKfRMYJCZ9TezBGAiMHfvk+5e7O7J7p7m7mnAp8AF7p7VJIlFDsC7K7by9KfruPrk/pwwMDnoOCJNar+F7u5VwHXAG8ByYI67LzOzu83sgqYOKHKwtpWU88sXljCkZxK3nJ0edByRJhfWybncfR4wr95jdzYy9tRDjyVyaNyd215ays6ySp6ZMoY2rbQbVOKfdopKXJqTlcdb2Vv41fh0hvTsGHQckcNChS5xJ7ewlN+9ks0JR3bjyhP7Bx1H5LBRoUtcqaqu4cY5i2nVwvjzj46hhXaDSjOiC1xIXHno3TUsWr+Dv04aRa9O7YKOI3JYaYYucWNx3g6mzV/NhSOP4HvHaDeoND8qdIkLuyuquPG5xfRIasPvJgwPOo5IILTkInHhD68tJ3dbKbOmjKNTO+0GleZJM3SJee8s38Ksz9Yz9eQBHH9kt6DjiARGhS4xrbCknFtfXMLQXh256azBQccRCZSWXCRmuTu3vbiEnXuqmDllpHaDSrOnGbrErNmZeby9fCu/Ojud9J5JQccRCZwKXWLSV4Wl3P1KNicO1G5Qkb1U6BJzqqpruPG5xbRuafzpIu0GFdlLa+gScx58N4fFedoNKlKfZugSUxat385f5+doN6hIA1ToEjNKymt3g/bs2Fa7QUUaoCUXiRm/nbuM9UW7efZq7QYVaYhm6BIT5n6xkRcW5HPddwcydoB2g4o0RIUuUS+vaDd3vLSUY/t25henDwo6jkjUUqFLVKuqruH62YsAeGDiKFq11I+sSGO0hi5Rbdo7q1m4fgfTJo2iT9fEoOOIRDVNdyRqfbZ2Gw++m8MPjk3lAh2iKLJfKnSJSsW7K7nhucX07ZrI7yYcFXQckZigJReJOu7ObS8toWBXOS9dcwId2ujHVCQcmqFL1JmdmcfrX27mlrPTGZHaOeg4IjFDhS5RZcXmnfx27jJOGpjM1JMHBB1HJKao0CVqlJRXcc3MhXRs15r7Lh6psyiKHCAVukQFd+eOfywlt7CUaRNHkZLUJuhIIjFHhS5RYXZmHi8v3siNZwzWhZ5FDpIKXQKXvXEnd81dxsmDkrn2uwODjiMSs1ToEqiS8iqunbWQLolaNxc5VDrAVwLj7vz6paWs21bKs1ePI7mD1s1FDkVYM3QzG29mK80sx8xua+D5m8ws28yWmNk7ZtYv8lEl3jzz6Tpe+WIjN5+VrlPiikTAfgvdzFoCDwHnAMOASWY2rN6wRUCGu48AXgDujXRQiS9ZuUX87pVsThvSnZ9958ig44jEhXBm6GOAHHdf6+4VwGxgQt0B7v6uu+8O3f0USI1sTIknW3fu4WczF5LapZ3WzUUiKJxC7w3k1bmfH3qsMVcBrzf0hJlNNbMsM8sqKCgIP6XEjYqqGn42cyGl5VU8ekmGLiUnEkHhFHpD0ydvcKDZZCAD+J+Gnnf3x9w9w90zUlJSwk8pceP3r2azYN127v3hCNJ7JgUdRySuhHOUSz7Qp879VGBj/UFmdgZwB/Addy+PTDyJJ89n5fH0p+uYesoAzh+h85uLRFo4M/RMYJCZ9TezBGAiMLfuADMbBTwKXODuWyMfU2Ldkvwd3PHPLznhyG786uz0oOOIxKX9Frq7VwHXAW8Ay4E57r7MzO42swtCw/4H6AA8b2aLzWxuIy8nzdDm4j1cPSOLlA5t+OskXRdUpKmEtbHI3ecB8+o9dmed22dEOJfEid0VVUyZkUnJnipevOYEumnzkEiT0U5RaTI1Nc5Nz31B9sadPH5ZBkN6dgw6kkhc0799pcn8+a2V/GvZZm4/dyinDekRdByRuKdClybxj0X5PPTuGiYe14erTuofdByRZkGFLhH38ZpCbn1hKeMGdOXuCcMx005QkcNBhS4Rlb1xJz+dsYC05EQenZxBQiv9iIkcLvrbJhGTV7Sby5/8nA5tW/HUFWPolKht/SKHkwpdImJ7aQWXPfk5eyqrmX7lGI7o3C7oSCLNjg5blENWWl7FldMzyd9exswpYxncQ+doEQmCZuhySPZUVjNlehZL8ouZNnEUx6V1DTqSSLOlQpeDVl5VzdSnF/DpV9v480XHMH54z6AjiTRrKnQ5KJXVNVw3axHvryrgnu8fzYWj9nWKfBE5HFTocsAqq2u44bnFvJW9hbsnHMXFx/UNOpKIoA9F5QCVV1Xz81mLeDN7C7efO4RLj08LOpKIhKjQJWxlFdX8v2cW8N6qAu763jCuOFFb+kWiiQpdwlJSXsWU6Zl89lUR//2Do7XMIhKFVOiyXwW7ypkyPZMvN+7k/otHMmGkPgAViUYqdNmnNQUlXP7k5xTsKufRyaM5Y5hOgysSrVTo0qjM3CKunpFFqxbGc1OP55g+nYOOJCL7oEKXBj2flccd//yS1M7teOqKMfTtlhh0JBHZDxW6fENFVQ1/eC2bGZ+s44Qju/HQj4+lS/uEoGOJSBhU6PK1rbv2cO3MhWTmbufqk/tz6/ghtGqpvWcisUKFLgC8u2Irv3zhC0rKq5g2aRQXHHNE0JFE5ACp0Ju5PZXV3PP6Cp76OJchPZOYOWUc6T11+luRWKRCb8YWrd/ObS8uZeWWXVxxYhq3jh9C29Ytg44lIgdJhd4MlZRX8ac3VjL9k1x6JLXlySuO47vp3YOOJSKHSIXejLg7ry7ZxB/nLWfzzj1cOq4ft5ydTlJbXftTJB6o0JuJrNwi/vDachbn7WBor4489JNjObZvl6BjiUgEqdDj3KL123no3RzeXr6VHh3bcO8PR/CDY1Np2cKCjiYiEaZCj0M1Nc5Hawp55L01fJSzjc6JrbnlrMFceVJ/EhP0Ry4Sr/S3O45sL63ghQX5zPp8PV8VlpKS1IY7zh3Kj8f2pX0b/VGLxDv9LY9xu/ZU8vbyLby2ZBPvryqkorqG49K6cP3pgxg/vKcOQxRpRlToMaamxsnetJMPcwr5cHUhn39VREV1DUd0asslx/fjooxUhvTsGHRMEQlAWIVuZuOBB4CWwOPufk+959sAM4DRwDbgYnfPjWzU5qequob87WWs2LyLpRt2sCS/mKUbitmxuxKAwT06cOnx/Tjn6F6M6tOZFvqgU6RZ22+hm1lL4CHgTCAfyDSzue6eXWfYVcB2dx9oZhOB/wYuborAsczdqaiuYXd5NaUVVZRVVLOrvIptJRUU7CqnsKScgl3lbNhRxleFpeQV7aaqxgFo2cJI75HE+KN6clxaV04alEyPjm0DfkciEk3CmaGPAXLcfS2Amc0GJgB1C30C8NvQ7ReAB83M3N0jmBWAOZl5PPbBWtydr1/c/++3vd9y73PusHfk3jR1U9V9na+fx+vcrvtcvddp7PvVewyvvV1WWU11zb7/k3RObE2vTu0Y2iuJc4b3JC25PQO7d2BYr45aDxeRfQqn0HsDeXXu5wNjGxvj7lVmVgx0AwrrDjKzqcBUgL59D+4iw13aJ5DeI3TyKIO9iwxmtvchQje/8dzXixFfP2ffGGd1Hid03+p9kX3j+zX8OnWz1B/XLqEFiQmtSExoSfuEViS2qf09uUMbkpMS6Na+DQmtdLpaETk44RR6Qwuz9aeZ4YzB3R8DHgPIyMg4qNn7mcN6cKauayki8i3hTAfzgT517qcCGxsbY2atgE5AUSQCiohIeMIp9ExgkJn1N7MEYCIwt96YucBlods/BOY3xfq5iIg0br9LLqE18euAN6g9bPEJd19mZncDWe4+F/g78LSZ5VA7M5/YlKFFROTbwjoO3d3nAfPqPXZnndt7gIsiG01ERA6EDqkQEYkTKnQRkTihQhcRiRMqdBGROGFBHV1oZgXAukC++YFLpt6u1zgSz+8N4vv96b3FrkN5f/3cPaWhJwIr9FhiZlnunhF0jqYQz+8N4vv96b3FrqZ6f1pyERGJEyp0EZE4oUIPz2NBB2hC8fzeIL7fn95b7GqS96c1dBGROKEZuohInFChi4jECRX6PpjZeDNbaWY5ZnZb0Hkiycz6mNm7ZrbczJaZ2fVBZ4o0M8jxXCQAAAKgSURBVGtpZovM7NWgs0SamXU2sxfMbEXoz/D4oDNFipndGPqZ/NLMnjWzmL14rpk9YWZbzezLOo91NbO3zGx16Pcukfp+KvRG1Lk49jnAMGCSmQ0LNlVEVQE3u/tQYBxwbZy9P4DrgeVBh2giDwD/cvchwDHEyfs0s97AL4AMdx9O7Sm7Y/l03E8B4+s9dhvwjrsPAt4J3Y8IFXrjvr44trtXAHsvjh0X3H2Tuy8M3d5FbSH0DjZV5JhZKnAe8HjQWSLNzDoCp1B7HQLcvcLddwSbKqJaAe1CVz9L5NtXSIsZ7v4+37562wRgeuj2dODCSH0/FXrjGro4dtwUXl1mlgaMAj4LNklE3Q/8CqgJOkgTGAAUAE+GlpQeN7P2QYeKBHffAPwJWA9sAord/c1gU0VcD3ffBLUTK6B7pF5Yhd64sC58HevMrAPwInCDu+8MOk8kmNn5wFZ3XxB0libSCjgWeNjdRwGlRPCf7UEKrSdPAPoDRwDtzWxysKlihwq9ceFcHDummVlrast8pru/FHSeCDoRuMDMcqldKjvNzJ4JNlJE5QP57r73X1QvUFvw8eAM4Ct3L3D3SuAl4ISAM0XaFjPrBRD6fWukXliF3rhwLo4ds8zMqF2DXe7ufwk6TyS5+6/dPdXd06j9c5vv7nEzy3P3zUCemaWHHjodyA4wUiStB8aZWWLoZ/R04uQD3zrmApeFbl8GvBypFw7rmqLNUWMXxw44ViSdCFwCLDWzxaHHbg9dP1ai38+BmaHJxlrgioDzRIS7f2ZmLwALqT0SaxExfBoAM3sWOBVINrN84C7gHmCOmV1F7f/AInY9Zm39FxGJE1pyERGJEyp0EZE4oUIXEYkTKnQRkTihQhcRiRMqdBGROKFCFxGJE/8fQz7rYoRZAu4AAAAASUVORK5CYII=" alt="" />  aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhU1fnA8e+bnS1AIBBI2PcdIYBiVRQQ3ABxQ7Fia0tdqFbr/qvWurRarVtrVdxtVQTUiooiiIo7hDWQsISAEBJCICwhQNb398fc2GkMZgKT3Fnez/Pkycy55955r4b7zj3n3HNEVTHGGBN+ItwOwBhjjDssARhjTJiyBGCMMWHKEoAxxoQpSwDGGBOmLAEYY0yYsgRgTJATkZNFZJOIHBSRSW7HY4KH2HMAxgQ3EfkEmKeqT7gdiwkudgdgTPDrBKxzOwgTfCwBmJAgIkNEZKWIFInIHBF5U0TuF5GWIvK+iBSIyF7ndYrXfp859b52mlDeE5FWIvKaiBwQkWUi0tmrvorItU6TS5GI3Cci3UTkG6f+bBGJceqOEpEcEblVRHaJSJ6ITBKRs0Vko4gUisidXsce7hxnn1P3H1XH+onz3gx0Bd5z4o/1939bE7osAZig51wk3wFeBhKAN4Dznc0RwEt4viV3BA4D/6h2iCnAz4FkoBvwjbNPApAJ/LFa/fHAUOBE4FZgJjAV6AD0By71qpsExDnHvht4Drjc2f8U4G4R6erUrQBuBFoDJwGjgWt/6txVtRuwDThPVZuqaslP1TfGmyUAEwpOBKKAJ1W1TFXfBpYCqOoeVX1LVQ+pahHwAHBatf1fUtXNqrof+BDYrKqLVLUcmAOcUK3+Q6p6QFXXAWuBj1U122t/7/plwAOqWgbMwnNxf0JVi5z91wEDnViXq+q3qlquqluBZ2uI1Ri/iXI7AGP8oD2wQ/93RMN2ABFpDDyG51t7S2dbMxGJVNUK532+136Ha3jftNrn1VY/yev9Hq/POXyU/Zs6sfYEHgVSgcZ4/n0ur36yxviL3QGYUJAHJIuIeJV1cH7/HugFjFDVeOBUp9y7bqB4GlgP9HBivZPAjNOECEsAJhR8g6f9fIaIRInIRGC4s60Znm/Z+0QkgR+35weSZsAB4KCI9AaucTkeE+IsAZigp6qlwGTgKmAfnk7W94ES4HGgEbAb+Bb4yKUwfXEzcBlQhKez+E13wzGhzh4EMyFJRL4DnlHVl9yOxZhAZXcAJiSIyGkikuQ0AU3DM7ImkL/tG+M6GwVkQkUvYDaeETWbgQtVNc/dkPxDRE7BM7z0R1S1+gglY3xmTUDGGBOmrAnIGGPCVFA1AbVu3Vo7d+7sdhjGGBNUli9fvltVE6uXB1UC6Ny5M2lpaW6HYYwxQUVEvq+p3KcmIBEZLyIbRCRLRG6vYftNIpIhImtE5BMR6eS1bZozc+ImZ3RGVflQEUl3jvlktac4jTHG1LNaE4CIRAJPAWcBfYFLRaRvtWorgVRVHQjMBf7q7Fv15OUIPE9m/lFEquZjeRqYDvRwfsYf99kYY4zxmS93AMOBLGe2w1I8MxpO9K6gqp+q6iHn7bdA1Xzr44CFqlqoqnuBhcB4EWkHxKvqN84EXq8CtpSdMcY0IF8SQDLOzIqOHKfsaK7iv2OWj7ZvsvPa12MaY4zxM186gWtqm6/x4QERuRzPVLZVc5gfbd+6HHM6nqYiOnbsWFusxhhjfOTLHUAO/51aFzzNO7nVK4nIGOD/gAleqxIdbd8c/ttMdNRjAqjqTFVNVdXUxMQfjWIyxhhzjHxJAMuAHiLSxVl6bwowz7uCiJyAZ/WiCaq6y2vTAuBMZ13WlsCZwALnEf0iETnRGf1zBfCuH87HGGOMj2ptAlLVchGZgediHgm8qKrrROReIE1V5wEP45mDZY4zmnObqk5Q1UIRuQ9PEgG4V1ULndfX4FnDtRGePoMa5zoxpj4dKi0nM6+IzQUHKSwupaSsksYxkbRuFkPPts3o2bYZ0ZH2wLwJTUE1F1Bqaqrag2DmeB0ureC91bnMW53L0i2FlFZUHrVubFQEJ3dvzfh+SZwzsB1NYoPq2UljABCR5aqaWr3c/ppN2DhUWs4LX2zhuS+yOXCknK6JTZg2shPDu7SiR5umtImPJTYqkoMl5RQUHSEjr4gV3+9lYUY+i9fv4r73M7h4WAd+fUpXkprHuX06xhw3uwMwYWFRRj53vpPOrqISxvZty69P6cqwzi3x5QF0VWXFtn288vVW5qfnERUp/OpnXbl6VDea2h2BCQJHuwOwBGBC2uHSCu5+dy1zlufQp10890/qx9BOCcd8vO2Fh/jrgg28tzqX5BaN+MvkAZza00anmcBmCcCEndx9h/n1q2lk5B3gulHduX50D2Ki/NOhu/z7Qm6Zu4bsgmIuHd6RP57Xl7joSL8c2xh/sz4AE1Y27Czi8he+43BpBS9MS+WM3m39evyhnRKYf/0pPLpwIzOXZLMmZx9PTx1Kx1aN/fo5xtQnG99mQk5m3gEufe5bBHjrmpF+v/hXiYuO5M6z+/D8FalsKzzEuX//gq83766XzzKmPlgCMCFlU34Rlz33LTGREbz5m5PoldSs3j9zTN+2vP/bn9E2Po5pLy7l3VU76v0zjfEHSwAmZOwqOsKVLy0jMiKCN39zIl1aN2mwz+7Uqglzrx7JkI4tuWHWKp5bkt1gn23MsbIEYELCodJyrno5jcLiUl66chidWjXcxb9K88bRvHrVcM4Z0I4H5mfy1KdZDR6DMXVhncAm6Kkqd7ydzrrc/Tx3RSoDUpq7FktsVCRPXnoC0ZHCwws2oKrMOKOHa/EY81MsAZig9/rSbby7Kpffj+3J6D710+FbF5ERwt8uHoyI8MjHG4mMiOCaUd3cDsuYH7EEYILa2h37+dO8DE7tmch1p3d3O5wfREYIj1w0iIpK5aGP1tOqaQwXp3aofUdjGpAlABO0jpRVcP2slSQ0ieHxSwYTEVH7tA4NqSoJ7D1Uyh1vp5PQOIYxfd2/QzGminUCm6D12MKNZBcU8/BFA0loEuN2ODWKiYrgmcuH0r99PNe9voK0rYW172RMA7EEYILSim17ee6LbC4d3oFTegT2XDxNYqN48cphtG/RiOn/Ws72wkNuh2QMYAnABKHS8kpumbOads0bcefZfdwOxyetmsbywrRUyisq+fWraRwsKXc7JGMsAZjg88KXW9hcUMz9k/rTLC7a7XB81jWxKU9NHcKmXQf53axVVFYGz0SMJjT5lABEZLyIbBCRLBG5vYbtp4rIChEpF5ELvcpPF5FVXj9HRGSSs+1lEdnitW2w/07LhKq8/Yf5++JNjO3bltN7t3E7nDo7pUcid53Th0WZ+Tz88Qa3wzFhrtZRQCISCTwFjAVygGUiMk9VM7yqbQOuBG723ldVPwUGO8dJALKAj72q3KKqc4/nBEx4uf+DTCoqlbvP7et2KMds2sjObMg/yNOfbWZQSgvG909yOyQTpny5AxgOZKlqtqqWArOAid4VVHWrqq4Bjr64KlwIfKiq1gNmjsk3m/fwwZo8rhnVjQ4JwTvtsohwz4S+DEppzi1zVvP9nmK3QzJhypcEkAxs93qf45TV1RTgjWplD4jIGhF5TERia9pJRKaLSJqIpBUUFBzDx5pQoKo8+GEm7ZvHcfVpwf9UbWxUJP+4bAgREcK1r63gSFmF2yGZMORLAqjp6Zo69V6JSDtgALDAq/gOoDcwDEgAbqtpX1WdqaqpqpqamBjYw/1M/flo7U5W5+znd2N7hszKWx0SGvPoxYNYl3uAP72XUfsOxviZLwkgB/B+hj0FyK3j51wMvKOqZVUFqpqnHiXAS3iamoz5kfKKSh7+eAM92jTlgiEpbofjV6P7tOWaUd14Y+k23l6R43Y4Jsz4kgCWAT1EpIuIxOBpyplXx8+5lGrNP85dASIiwCRgbR2PacLEnOU5ZBcUc/O4XkQG2HQP/vD7sT0Z3iWBu/6z1voDTIOqNQGoajkwA0/zTSYwW1XXici9IjIBQESGiUgOcBHwrIisq9pfRDrjuYP4vNqhXxORdCAdaA3cf/ynY0JNSXkFTyzaxJCOLTgzROfRiYqM4PFLBhMZIdwwaxVlFT81lsIY//FpMjhVnQ/Mr1Z2t9frZXiahmradys1dBqr6hl1CdSEp7nLc9h54AiPXDQIz81iaGrfohF/njyAGa+v5O+fbOKmM3u5HZIJA/YksAlYZRWVPP3ZZk7o2IKTu7dyO5x6d+7A9lwwJIV/fJrF0i02aZypf5YATMB6d1UuOXsPM+P07iH97d/bnyb2I6VlY258cxX7D5fVvoMxx8ESgAlIFZXKPz/Nok+7eM4IwikfjlXT2CgenzKYnQeOcPe7Ni7C1C9LACYgzU/PI3t3Mb89I3y+/VcZ0rElvz2jO++uyuWjtXluh2NCmCUAE3BUlWc+30zXxCaM7xee8+Rcd3p3+rWP5//eWcuegyVuh2NClCUAE3C+21LIutwD/OpnXQNumceGEh0Zwd8uHsSBI2XcPW9d7TsYcwwsAZiA8+KXW2jZOJrJQ45lyqnQ0Tspnt+N6ckHa/J4f01dH743pnaWAExA+X5PMQsz87lsRMeQmfPnePzm1K4MTGnOXf9ZS0GRNQUZ/7IEYALKy19vJSpCuOKkzm6HEhCiIiP420WDKC6p4A//SUfVVhEz/mMJwASMA0fKmL1sO+cObE/b+Di3wwkYPdo246Yze7JgXT7zVltTkPEfSwAmYMxetp3i0gp+eXIXt0MJOL8+pSuDOrTgT+9lUFhc6nY4JkRYAjABQVV57bttDO3UkgEpzd0OJ+BERggPXTCAA4fLuP8DWzvA+IclABMQvtm8hy27i5k6oqPboQSs3knxXDOqG2+v2MGSjbY6njl+lgBMQHjtu220aBzN2QPauR1KQLvu9O50TWzCne+kc6i03O1wTJCzBGBcV1BUwoJ1O7lgSIoN/axFXHQkD04eSM7ewzz68Ua3wzFBzhKAcd2c5dspr1Qus+YfnwzvksDUER158astrN6+z+1wTBDzKQGIyHgR2SAiWSJyew3bTxWRFSJSLiIXVttWISKrnJ95XuVdROQ7EdkkIm86y02aMFNZqbyxdBsndk2gW2JTt8MJGred1ZvEZrHc9tYaW0HMHLNaE4CIRAJPAWcBfYFLRaRvtWrbgCuB12s4xGFVHez8TPAqfwh4TFV7AHuBq44hfhPkvsjazfbCw1w2opPboQSV+Lho7pvYn/U7i5i5JNvtcEyQ8uUOYDiQparZqloKzAImeldQ1a2qugbw6auIsxD8GcBcp+gVPAvDmzAza+k2EprEMK5faK73W5/O7JfE2QOSeOKTTWzZbYvJm7rzJQEkA9u93udQwxq/PyFORNJE5FsRqbrItwL2OQvO/+QxRWS6s39aQYENfQsle4tLWZSZz/knJBMbZZ2/x+Ke8/oRGxVh00SYY+JLAqhpPt66/KV1VNVU4DLgcRHpVpdjqupMVU1V1dTExMQ6fKwJdPNW51JWoVwwJMXtUIJWm/g4bh3Xi6+y9tg0EabOfEkAOUAHr/cpgM9/aaqa6/zOBj4DTgB2Ay1EJOpYjmlCw1srcujbLp6+7ePdDiWoXTaiE4M6tOC+9zPYf8jWETa+8yUBLAN6OKN2YoApwLxa9gFARFqKSKzzujVwMpChnnvVT4GqEUPTgHfrGrwJXhvzi1iTs58Lh9q3/+MVGSE8MKk/hcWl/HXBerfDMUGk1gTgtNPPABYAmcBsVV0nIveKyAQAERkmIjnARcCzIlK1hFEfIE1EVuO54D+oqlUTmdwG3CQiWXj6BF7w54mZwPbW8hyiIoSJg9u7HUpI6J/cnCtHduH1pdtYsW2v2+GYICHB1HGUmpqqaWlpbodhjlN5RSUnPbiYwR1a8NwVqW6HEzIOlpQz5m+f07JJDO/NOJmoSHvO03iIyHKnL/Z/2F+IaXBfbNpNQVGJdf76WdPYKO6Z0JfMvAO8/PVWt8MxQcASgGlwc1fk0LJxNGf0buN2KCFnXL8kRvduw6MLN7Jj32G3wzEBzhKAaVAHjpSxMCOfiYOTiYmyPz9/ExHumdCPSlX+NG9d7TuYsGb/Ak2DWrB2J6Xlldb5W486JDTmd2N68nFGPgsz8t0OxwQwSwCmQc1bnUvHhMYM7tDC7VBC2lU/60LPtk3547trKS6xdQNMzSwBmAaz+2AJX2/ew3mD2uGZDsrUl+jICP58/gBy9x/hiU82uR2OCVCWAEyDmZ+eR0WlMmFQXaaSMscqtXMCU4Z14IUvt5CZd8DtcEwAsgRgGsy8Vbn0atuMXknN3A4lbNw2vjfNG0Vz5zvpVFYGzzM/pmFYAjANYse+w6R9v5cJ1vnboFo2ieH/zu7Dym37mLVse+07mLBiCcA0iPecmSrPG2gJoKFNHpLMiV0TePDDTAqKStwOxwQQSwCmQcxblcvgDi3o2Kqx26GEHRHh/kkDOFxWwZ/nZ7odjgkglgBMvcvadZCMvANMGGTf/t3SvU1Trj6tG++s3MHXWbvdDscECEsApt7NW51LhMC5A9u5HUpYu+707nRq1Zg//GctJeUVbodjAoAlAFPv5qfnMbxLAm3i49wOJazFRUdy78T+ZO8u5pnPbCF5YwnA1LNN+UVk7TrI2QPs238gOK1nIucObMdTn2XZQvLGEoCpXx+u3YmIZ5ZKExjuPrcvsZER3PWftbaQfJjzKQGIyHgR2SAiWSJyew3bTxWRFSJSLiIXepUPFpFvRGSdiKwRkUu8tr0sIltEZJXzM9g/p2QCyfz0PIZ2bElba/4JGG3i47hlfC++zNptC8mHuVoTgIhEAk8BZwF9gUtFpG+1atuAK4HXq5UfAq5Q1X7AeOBxEfGeBewWVR3s/Kw6xnMwAWrL7mLW7yziLGv+CThTR3RiUEpzW0g+zPlyBzAcyFLVbFUtBWYBE70rqOpWVV0DVFYr36iqm5zXucAuINEvkZuA9+HaPADG97fmn0ATGSE8cP4ACotLefhjW0g+XPmSAJIB72fIc5yyOhGR4UAMsNmr+AGnaegxEYk9yn7TRSRNRNIKCgrq+rHGRR+t3cmgDi1IbtHI7VBMDfonN2fayM689t02VtpC8mHJlwRQ07y9deo5EpF2wL+AX6hq1V3CHUBvYBiQANxW076qOlNVU1U1NTHRbh6CxfbCQ6zJ2c/Z9u0/oP3+zF60bRbHne+spbyisvYdTEjxJQHkAB283qcAPvcciUg88AHwB1X9tqpcVfPUowR4CU9TkwkRC9btBOCs/tb+H8iaxkbxx/NsIflw5UsCWAb0EJEuIhIDTAHm+XJwp/47wKuqOqfatnbObwEmAWvrErgJbPPT8+jXPt7m/gkC4/sncYazkHyuLSQfVmpNAKpaDswAFgCZwGxVXSci94rIBAARGSYiOcBFwLMiUrUa9cXAqcCVNQz3fE1E0oF0oDVwv1/PzLhm5/4jrNi2j7Os+ScoiAh/chaSv8cWkg8rUb5UUtX5wPxqZXd7vV6Gp2mo+n7/Bv59lGOeUadITdD4yBn9Y8M/g0eHhMbcMLonD320noUZ+Yzt29btkEwDsCeBjd/NX7uTnm2b0i2xqduhmDr41SmeheTvmbeOQ6W2kHw4sARg/Gr3wRKWbS1kvHX+Bp3oyAgeOH8AO/Yd5olFtpB8OLAEYPxqceYuVGFcP2tCCEbDOidwSWoHnv9yC+t32kLyoc4SgPGrhZn5JLdoRN928W6HYo7R7Wc5C8m/bQvJhzpLAMZvDpdW8MWmAsb0aYNndK8JRi2bxHDn2X1YsW0fb6bZQvKhzBKA8Zsvs3ZzpKySMTaCJOhdMCSZEV0SePDD9ew+aAvJhypLAMZvFmXk0yw2ihFdWrkdijlOIsID5/fncGkFf3ovw+1wTD2xBGD8oqJS+WR9PqN6tyEmyv6sQkH3Ns247vTuvLc6l08y890Ox9QD+5dq/GLV9n3sPljKmD5t3A7F+NE1o7rRq20z/vCftRQdsXUDQo0lAOMXCzPyiYoQRvWyBBBKYqIiePCCAew8cISHPrJ1A0KNJQDjFwszdjKiawLNG0W7HYrxsxM6tuQXI7vw72+3sXRLodvhGD+yBGCOW3bBQTYXFDO2j43+CVU3j+tJSstG3P7WGo6UVbgdjvETSwDmuC1yOght+GfoahwTxZ/PH0D27mL+vtimiQgVlgDMcVuYkU+fdvGktLS5/0PZqT0TuWBICs9+nk1Grk0TEQosAZjjsudgCcu/32vTB4eJu87tQ4vG0dz21hpbQjIEWAIwx2Xx+l1UKtb+HyZaNI7hngn9SN+xnxe/2uJ2OOY4WQIwx2VRZj7tmsfRP9kmfwsX5wxox5g+bXl04Ua27i52OxxzHHxKACIyXkQ2iEiWiNxew/ZTRWSFiJSLyIXVtk0TkU3OzzSv8qEiku4c80mx2cOCzpGyCpZs3M2YPm1t8rcwIiLcP6k/0ZER3DxnNRU2Y2jQqjUBiEgk8BRwFtAXuFRE+lartg24Eni92r4JwB+BEcBw4I8i0tLZ/DQwHejh/Iw/5rMwrvgqazeHyyps9E8YSmoexz3n9SPt+728ZE1BQcuXO4DhQJaqZqtqKTALmOhdQVW3quoaoHqv0DhgoaoWqupeYCEwXkTaAfGq+o2qKvAqMOl4T8Y0rEWZ+TSNjeLErgluh2JcMHlIMmP6tOHhBRvYXHDQ7XDMMfAlASQD3pOC5zhlvjjavsnO61qPKSLTRSRNRNIKCgp8/FhT3yorlUWZuzitVyKxUZFuh2NcICL8+fwBxEVHWlNQkPIlAdTUuOvr/+mj7evzMVV1pqqmqmpqYmKijx9r6tvqnH0UFJXY6J8w1yY+jnsn9mPltn0890W22+GYOvIlAeQAHbzepwC5Ph7/aPvmOK+P5ZgmACzMyCcyQjjdJn8LexMGtWd8vyQe/Xgjm/KL3A7H1IEvCWAZ0ENEuohIDDAFmOfj8RcAZ4pIS6fz90xggarmAUUicqIz+ucK4N1jiN+4ZGFGPsM7J9C8sU3+Fu5EhPvP70/TuCh+P2e1PSAWRGpNAKpaDszAczHPBGar6joRuVdEJgCIyDARyQEuAp4VkXXOvoXAfXiSyDLgXqcM4BrgeSAL2Ax86NczM/Vm6+5iNu06aE//mh+0bhrLfRP7syZnP88usaagYBHlSyVVnQ/Mr1Z2t9frZfxvk453vReBF2soTwP61yVYExiqJn+zBGC8nTOwHR+ubcfjizZyRu829GlnDwcGOnsS2NTZwox8eic1o0OCTf5m/te9E/vTonEMv5u1yqaNDgKWAEyd7C0uZdnWQvv2b2qU0CSGhy8cyIb8Iv760Qa3wzG1sARg6qRq8rcxNvzTHMWoXm2YdlInXvxqC0s22rM7gcwSgKmTRZn5tI2PZUByc7dDMQHsjrP70KNNU26es5rC4lK3wzFHYQnA+OxIWQWfbyxgTJ+2RETY5G/m6OKiI3l8ymD2HirlzrfT8cz4YgKNJQDjs2827+FQqU3+ZnzTr31zbhnXi4/W7WROWk7tO5gGZwnA+GxhZj5NYiIZ2a2V26GYIPGrn3XlpK6tuOe9dbZ2QACyBGB8UlmpLMrI59SeNvmb8V1EhPC3iwcRFSH87s1VlNlTwgHFEoDxSfqO/ewqKrHhn6bO2rdoxF8mD2TV9n088rENDQ0klgCMTxZm5BMh2ORv5picM7AdU0d05NnPs/l0wy63wzEOSwDGJwsz8hnWOYGWTWLcDsUEqbvO7UvvpGb8fvZqdu4/4nY4BksAxgfb9hxiQ36RNf+Y4xIXHck/LhvCkbIKrp+10mYNDQCWAEytPs7YCcCZfZNcjsQEu+5tmnL/pP4s3VLIk59scjucsGcJwNRqUWY+vdo2o2Mrm/zNHL/JQ1K4aGgKf/80i6+ydrsdTlizBGB+0r5DpSzbuteaf4xf/WliP7olNuWGWavYVWT9AW6xBGB+0uL1u6ioVEsAxq8ax0Tx1GVDOFhSxozXV9rzAS7xKQGIyHgR2SAiWSJyew3bY0XkTWf7dyLS2SmfKiKrvH4qRWSws+0z55hV22x8YQBamGGTv5n60SupGQ9OHsjSLYU8+OF6t8MJS7UmABGJBJ4CzgL6ApeKSN9q1a4C9qpqd+Ax4CEAVX1NVQer6mDg58BWVV3ltd/Uqu2qaoODA0zV5G+jbfI3U08mnZDMlSM788KXW5i3OtftcMKOL3cAw4EsVc1W1VJgFjCxWp2JwCvO67nAaGexd2+XAm8cT7CmYVVN/mbNP6Y+3Xl2H1I7teS2uWvYsLPI7XDCii8JIBnY7vU+xymrsY6ziPx+oPqMYZfw4wTwktP8c1cNCQMAEZkuImkiklZQYItLNKSPM2zyN1P/YqIi+OfUITSNi+Lqfy/nwJEyt0MKG74kgJouzNUn9/7JOiIyAjikqmu9tk9V1QHAKc7Pz2v6cFWdqaqpqpqamJjoQ7jGHyorlU8y8zmtl03+Zupfm/g4/jl1CNsLD3HTm6uprLT1AxqCLwkgB+jg9T4FqN5Y90MdEYkCmgOFXtunUO3bv6rucH4XAa/jaWoyAWKNTf5mGtiwzgn84Zw+LMrM58nF9pBYQ/AlASwDeohIFxGJwXMxn1etzjxgmvP6QmCxOksAiUgEcBGevgOcsigRae28jgbOBdZiAsbCjJ1ERohN/mYa1LSRnblgSAqPL9rEB2vy3A4n5EXVVkFVy0VkBrAAiAReVNV1InIvkKaq84AXgH+JSBaeb/5TvA5xKpCjqtleZbHAAufiHwksAp7zyxkZv1iYkc/wzgm0aGyTv5mGIyL8eXJ/tu4p5vdzVtExoTEDUmwIcn2RYFqrMzU1VdPS0twOI+R9v6eY0x7+jLvO7ctVP+vidjgmDO0+WMLEf3xFRaXy7oyTaRsf53ZIQU1ElqtqavVyexLY/MjCjHwAzrT2f+OS1k1jeX5aKgeOlDH91TSOlFW4HVJIsgRgfuTjjHx6JzWjQ4JN/mbc06ddPI9fMpg1O/Zzy9w1BFNrRbCwBGD+R2FxKWlbC230jwkIZ/ZL4pZxvXhvdS6PL7KRQf5WayewCS+LMvKpVBjXz+b+NwrzbEYAABKgSURBVIHhmtO6kV1QzBOfbCK5RSMuHtah9p2MTywBmP/x4do8Ulo2ol/7eLdDMQbwjAz6y+QB5B84wh3vpJMYH2vDk/3EmoDMDw4cKeOrrD2c1T+Jo8zMYYwroiMjePryofROasZ1r60gPWe/2yGFBEsA5gefrt9FaUUl4/tb848JPE1jo3jpymG0bBzDL15exvbCQ26HFPQsAZgffLR2J22axXJCh5Zuh2JMjdrEx/HKL4dRVlHJtBeXUlhc6nZIQc0SgAHgcGkFn20oYFy/JJv73wS07m2a8fy0VHL2HebKl5ZSZLOHHjNLAAaAzzcWcLisgrOs+ccEgWGdE3h66hAycg9w1Sv2oNixsgRgAPhobR4tG0czvEuC26EY45PRfdry6CWDWba1kGv+vZzScltXuK4sARhKyyv5JHMXY/u2JSrS/iRM8JgwqD0PTBrApxsKuHH2KipsHYE6secADF9t3k1RSbmN/jFB6bIRHTlYUsaf56+naUwUD14wwIYx+8gSgGHB2p00jY3i5O6t3Q7FmGMy/dRuHDxSzpOLs4iOEu6d0N8GM/jAEkCYK6+o5OOMfM7o3caWfjRB7caxPSmtUJ75fDOqcN9ESwK1sQQQ5r7J3kNhcSlnD2jndijGHBcR4bbxvRCBpz/bTKXCA5MsCfwUn3r8RGS8iGwQkSwRub2G7bEi8qaz/TsR6eyUdxaRwyKyyvl5xmufoSKS7uzzpFijnSveW51L09goRvVKdDsUY46biHDruF5cd3o33li6jTvfSbcF5n9CrXcAIhIJPAWMxbP4+zIRmaeqGV7VrgL2qmp3EZkCPARc4mzbrKqDazj008B04FtgPjAe+PCYz8TUWUl5BR+t3cmZ/doSF23NPyY0iAg3n9mLCBH+vjiLSlX+MnkgkXYn8CO+3AEMB7JUNVtVS/Es7j6xWp2JwCvO67nA6J/6Ri8i7YB4Vf3GWTz+VWBSnaM3x+WLjbs5cKSc8wa1dzsUY/xKRLhpbE+uH92D2Wk5XP/GSntOoAa+JIBkYLvX+xynrMY6qloO7AdaOdu6iMhKEflcRE7xqp9TyzEBEJHpIpImImkFBQU+hGt89f6aXFo0juZnNvrHhKCqJPB/Z/fhg/Q8rnplGYdKy90OK6D4kgBq+iZfvVHtaHXygI6qegJwE/C6iMT7eExPoepMVU1V1dTERGun9pfDpRUszMjnrP5JRNvDXyaE/frUrvz1goF8lbWby5//jn2HbAK5Kr78y88BvJfgSQFyj1ZHRKKA5kChqpao6h4AVV0ObAZ6OvVTajmmqUefbthFcWkF5w205h8T+i4e1oF/Th3C2h0HuOTZb9l14IjbIQUEXxLAMqCHiHQRkRhgCjCvWp15wDTn9YXAYlVVEUl0OpERka5ADyBbVfOAIhE50ekruAJ41w/nY3z03upcWjeNZUTXVrVXNiYEjO/fjpd+MYztew9x/j+/ZlN+kdshua7WBOC06c8AFgCZwGxVXSci94rIBKfaC0ArEcnC09RTNVT0VGCNiKzG0zl8taoWOtuuAZ4HsvDcGdgIoAZysKScxet3cc6AJBsZYcLKyd1bM2v6iZSUVzL56a/5Omu32yG5SjyDcIJDamqqpqWluR1G0Ht7RQ43zV7NnKtPYlhnm/3ThJ+cvYf45cvLyC4o5sELBnLh0JTadwpiIrJcVVOrl1vvXxh6e8UOOiQ0YmhHW/nLhKeUlo2Ze81ITuzaipvnrObRjzcQTF+G/cUSQJjJ23+Yrzbv5vwTUuwReRPW4uOieekXw7g4NYUnF2cx4/WVYTdM1OYCCjP/WZmLKkw+ocbHLowJK9GRETx0wUC6JTbloY/Ws7ngIDN/nkrHVo3dDq1B2B1AGFFV3l6RQ2qnlnRu3cTtcIwJCCLCb07rxku/GE7uvsOc948v+WJTeDx0agkgjKTv2M+mXQeZPCS0O7yMORan9Uzkvd/+jKT4OKa9uJSZSzaHfL+AJYAw8vaKHcRERXCOTf1sTI06tWrC29eOZHz/JP48fz2/+ddy9h8qczusemMJIEyUllcyb3UuY/u0pXnjaLfDMSZgNYmN4qnLhvCHc/rw6YZdnP3kF6zcttftsOqFJYAwsXj9LgqLS5k8xDp/jamNiPCrU7oy5+qRiMBFz3zDc0uyQ25tAUsAYeKNpdtIio/jtJ42oZ4xvhrcoQUfXH8KY/q05YH5mVz1yjJ2FYXOPEKWAMLA9sJDLNlUwMXDOhBlM38aUyfNG0Xz9OVDuHdiP77evIdxjy1hfnqe22H5hV0NwsDsNM9yDpcM61BLTWNMTUSEK07qzAfXn0KHhMZc+9oKfjdrZdB3EFsCCHHlFZW8uWw7o3omktyikdvhGBPUurdpylvXjOTGMT15b00e4x5fwucbg/eZAUsAIW7x+l3sKirhshGd3A7FmJAQHRnBDWN68M61I2kaF8W0F5dy45ur2HOwxO3Q6swSQIh7fek22sbHcnov6/w1xp8GprTg/d/+jOtH9+D9NbmMfvRz5i7PCaqHxywBhLAtu4v5bEMBU4Z1tM5fY+pBXHQkN43tyfzrT6F7YlNunrOaqc9/R3bBQbdD84ldFULYy19tISYygqkndnQ7FGNCWo+2zZj9m5O4f1J/0nP2M+7xJfxlfiZFRwK7k9inBCAi40Vkg4hkicjtNWyPFZE3ne3fiUhnp3ysiCwXkXTn9xle+3zmHHOV89PGXydlYP/hMuYsz+G8Qe1p0yzO7XCMCXkREcLlJ3bik5tPY9LgZJ5dks3pj3zO7LTtAfsAWa0JwFnT9yngLKAvcKmI9K1W7Spgr6p2Bx4DHnLKdwPnqeoAPGsG/6vaflNVdbDzs+s4zsNUMydtO4dKK/jFyZ3dDsWYsNKmWRwPXzSId687mY4Jjbh17hom/fMrlm0trH3nBubLHcBwIEtVs1W1FJgFTKxWZyLwivN6LjBaRERVV6pqrlO+DogTkVh/BG6Orryikpe+2srwLgn0T27udjjGhKVBHVrw1jUjefySweQfOMJFz3zDL19eRmbeAbdD+4EvCSAZ2O71Pscpq7GOs4j8fqBVtToXACtV1Xus1EtO889dImLLU/nJR+t2smPfYX5p3/6NcZWIMOmEZD69eRS3ju9F2tZCzn7yC26YtZLv9xS7HZ5PCaCmC3P1Bq2frCMi/fA0C/3Ga/tUp2noFOfn5zV+uMh0EUkTkbSCguB94KKhqCpPfbqZrolNGNs3ye1wjDFA45gorh3VnS9uPYOrT+vGgnU7Gf23z7nznXS2Fx5yLS5fEkAO4D2HQAqQe7Q6IhIFNAcKnfcpwDvAFaq6uWoHVd3h/C4CXsfT1PQjqjpTVVNVNTUx0cay12bx+l1k5h3gulHdibQ1f40JKM0bR3Pb+N4sueV0Lh3ekblpOYx65DNumr2KrF0NP3TUlwSwDOghIl1EJAaYAsyrVmcenk5egAuBxaqqItIC+AC4Q1W/qqosIlEi0tp5HQ2cC6w9vlMxqsrfF2eR0rIREwa3dzscY8xRtImP475J/Vly6+lcObIzH6bvZOxjn3Pta8tZu2N/g8VRawJw2vRnAAuATGC2qq4TkXtFZIJT7QWglYhkATcBVUNFZwDdgbuqDfeMBRaIyBpgFbADeM6fJxaOvt68h1Xb93H1ad2Itge/jAl4Sc3juOvcvnx52+lcN6o7X2zczbl//5IpM79hwbqdVNTz8FEJpseWU1NTNS0tze0wApKqMvnpr8ndd5jPbzmduOhIt0MyxtTR/sNlvLlsG698/T079h2mQ0IjrhzZhYtTU2gWd+wr+YnIclVNrV5uXxNDxIJ1+azcto8bx/S0i78xQap5o2imn9qNz28ZxdNTh5AUH8d972dw0l8W10vTUJTfj2gaXHlFJX9dsJ5uiU24cGiK2+EYY45TVGQEZw1ox1kD2rEmZx9zl+fQK6mZ/z/H70c0DW7O8hyyC4p59udDbdI3Y0LMwJQWDExpUS/HtqtFkNt/qIxHFmxgaKeWnNm3rdvhGGOCiN0BBLlHPt7A3kOlvDpxOPYwtTGmLuwOIIil5+zn3999zxUndaZfe5vzxxhTN5YAglRpeSW3vbWGVk1iuenMnm6HY4wJQtYEFKSe+GQjGXkHmPnzocQfx/hgY0z4sjuAILT8+708/dlmLhqawpn9bMI3Y8yxsQQQZPYcLOG3r6+gXfNG3H1e9XV5jDHGd9YEFETKKyqZ8fpKdheX8tbVI4/r0XBjjLE7gCChqtz17jq+yd7DX84fwIAUG/VjjDk+lgCCxF8XbOCNpdu4dlQ3LrDpHowxfmBNQAFOVXnoow088/lmLhvRkVvG9XI7JGNMiLAEEMCOlFVw5zvpvL1iB5eN6Mh9E/vb077GGL+xBBCgNhcc5LevryQj7wA3junJ9aO728XfGONXlgACzKHScp75bDPPLsmmcUwkL0xLZXQfm+TNGON/PnUCi8h4EdkgIlkicnsN22NF5E1n+3ci0tlr2x1O+QYRGefrMcPNjn2HeXThRk556FOeXJzFuH5JfHjDqXbxN8bUm1rvAEQkEngKGAvkAMtEZJ6qZnhVuwrYq6rdRWQK8BBwiYj0xbOIfD+gPbBIRKomrqntmCFJVdl/uIz8AyVk7TrImh37+DprD+nOaj9j+rThmlHdGNopweVIjTGhzpcmoOFAlqpmA4jILGAi4H2xngjc47yeC/xDPA3WE4FZqloCbHEWjR/u1KvtmH5z5zvpfJe9hx9WP1ZQPBfjqjJVUNTz22uZ5Ko6VWU/1MG7nneZVn2Ecyz9n88tqaiktLzyh+NHRwoDkptz2/jenD0giU6tmvj79I0xpka+JIBkYLvX+xxgxNHqqGq5iOwHWjnl31bbN9l5XdsxARCR6cB0gI4dO/oQbg0n0KIRvZPiQaCqG1VEEEBqKPPUE6cMr3peZU7Fqn5Z7zr/W/bffQBiIiNoEx9H2/hYOiU0oWdSU2KjbA1fY0zD8yUB1DT0RH2sc7Tymvoeqh/TU6g6E5gJkJqaWmOd2lx3evdj2c0YY0KaL53AOUAHr/cpQO7R6ohIFNAcKPyJfX05pjHGmHrkSwJYBvQQkS4iEoOnU3detTrzgGnO6wuBxeppDJ8HTHFGCXUBegBLfTymMcaYelRrE5DTpj8DWABEAi+q6joRuRdIU9V5wAvAv5xO3kI8F3ScerPxdO6WA9epagVATcf0/+kZY4w5GlE9pmZ1V6SmpmpaWprbYRhjTFARkeWqmlq93GYDNcaYMGUJwBhjwpQlAGOMCVOWAIwxJkwFVSewiBQA37sdh49aA7vdDqKe2LkFr1A+Pzu3o+ukqonVC4MqAQQTEUmrqdc9FNi5Ba9QPj87t7qzJiBjjAlTlgCMMSZMWQKoPzPdDqAe2bkFr1A+Pzu3OrI+AGOMCVN2B2CMMWHKEoAxxoQpSwB+FsqL3YtIBxH5VEQyRWSdiNzgdkz+JiKRIrJSRN53OxZ/EpEWIjJXRNY7//9OcjsmfxKRG52/ybUi8oaIxLkd07ESkRdFZJeIrPUqSxCRhSKyyfnd0h+fZQnAj0QkEs9i92cBfYFLRaSvu1H5VTnwe1XtA5wIXBdi5wdwA5DpdhD14AngI1XtDQwihM5RRJKB64FUVe2PZ4r5Ke5GdVxeBsZXK7sd+ERVewCfOO+PmyUA/xqOs9i9qpYCVYvdhwRVzVPVFc7rIjwXkeSf3it4iEgKcA7wvNux+JOIxAOn4lm3A1UtVdV97kbld1FAI2dFwsYE8QqDqroEz7oq3iYCrzivXwEm+eOzLAH4VzI/Xuw+ZC6Q3kSkM3AC8J27kfjV48CtQKXbgfhZV6AAeMlp3npeRJq4HZS/qOoO4BFgG5AH7FfVj92Nyu/aqmoeeL6IAW38cVBLAP4lNZSF3DhbEWkKvAX8TlUPuB2PP4jIucAuVV3udiz1IAoYAjytqicAxfipCSEQOO3hE4EuQHugiYhc7m5UwcESgH+F/GL3IhKN5+L/mqq+7XY8fnQyMEFEtuJpujtDRP7tbkh+kwPkqGrV3dpcPAkhVIwBtqhqgaqWAW8DI12Oyd/yRaQdgPN7lz8OagnAv0J6sXsRETztyJmq+qjb8fiTqt6hqimq2hnP/7fFqhoS3yJVdSewXUR6OUWj8azTHSq2ASeKSGPnb3Q0IdTJ7ZgHTHNeTwPe9cdBa10U3vhOVctDfLH7k4GfA+kissopu1NV57sYk/HNb4HXnC8m2cAvXI7Hb1T1OxGZC6zAM1JtJUE8LYSIvAGMAlqLSA7wR+BBYLaIXIUn4V3kl8+yqSCMMSY8WROQMcaEKUsAxhgTpiwBGGNMmLIEYIwxYcoSgDHGhClLAMYYE6YsARhjTJj6f92f/nBRam35AAAAAElFTkSuQmCC" alt="" />

  ⑤、更多概率分布见:

  scipy官方文档:连续统计分布 https://docs.scipy.org/doc/scipy-1.4.0/reference/tutorial/stats/continuous.html

参考:scipy官方文档:连续统计分布 https://docs.scipy.org/doc/scipy-1.4.0/reference/tutorial/stats/continuous.html

iwehdio的博客园:https://www.cnblogs.com/iwehdio/