问题描述:
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Your algorithm should run in O(n) time complexity and O(1) space complexity.
Examples:
Given [1, 2, 3, 4, 5],
return true.
Given [5, 4, 3, 2, 1],
return false.
题意:
给定一无序数组,判断其中是否存在长度为3的递增子序列。
解题思路:
此问题可转化为先找长度为2的递增序列(记为first, second)然后再判断后面是否有比second更大的数。此时我们只需维护first, second,但可能出现如3,4,1这种情况,这时我们就需要另一个数temp表示位于递增序列后面但比first更小的数。之后对于数组中的每一个数nums[i],只需根据其在temp,first,second三者之间的位置来判断结果并维护这三个数,其中包括[负无穷, temp],(temp, first],(first, second],(second, 正无穷)四个区间
示例代码:
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
int len = nums.size();
if(len < 3){
return false;
}
int first = nums[0], second = INT_MAX, temp = nums[0];
for(int i = 1; i < len; i++){
if(nums[i] > second){
return true;
}
if(nums[i] > first){
second = nums[i];
}
else if(nums[i] <= temp){
temp = nums[i];
}
else{
first = temp;
second = nums[i];
}
}
return false;
}
};