最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 20166 Accepted Submission(s): 5992
Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2 1 2 5 6 2 3 4 5 1 3 0 0
Sample Output
9 11
Source
Recommend
notonlysuccess | We have carefully selected several similar problems for you:
2544
2066
1217
2112
1142
16570349 | 2016-03-16 13:33:03 | Accepted | 3790 | 405MS | 5144K | 2391B | C++ | czy |
题意:
求起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的
注意:
用优先队列的dijikstra,注意判断,对已经处理过的点,要直接舍弃掉
1 if(Dis[te.to] < te.dis) continue; 2 if(Dis[te.to] == te.dis && Cost[te.to] < te.cost) continue;
代码:
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algorithm> 5 #include <stack> 6 #include <cctype> 7 #include <vector> 8 #include <cmath> 9 #include <map> 10 #include <queue> 11 12 #define ll long long 13 #define eps 1e-8 14 #define N 1004 15 #define inf 0x3ffffffffffffff 16 17 using namespace std; 18 19 int n,m; 20 21 struct PP 22 { 23 friend bool operator < (PP n1,PP n2) 24 { 25 if(n1.dis == n2.dis){ 26 return n1.cost < n2.cost; 27 } 28 else{ 29 return n1.dis < n2.dis; 30 } 31 } 32 int to; 33 ll dis; 34 ll cost; 35 }; 36 37 int s,t; 38 ll Dis[N],Cost[N]; 39 40 vector<PP> G[N]; 41 42 void add_adge(int a,int b,ll d,ll q) 43 { 44 PP te; 45 te.to = b;te.dis = d;te.cost = q; 46 G[a].push_back(te); 47 te.to = a; 48 G[b].push_back(te); 49 } 50 51 void ini() 52 { 53 int i; 54 for(i = 0;i <= n;i++){ 55 G[i].clear(); 56 } 57 fill(Dis,Dis+N,inf); 58 fill(Cost,Cost+N,inf); 59 int a,b; 60 ll d,p; 61 while(m--){ 62 scanf("%d%d%I64d%I64d",&a,&b,&d,&p); 63 add_adge(a,b,d,p); 64 } 65 scanf("%d%d",&s,&t); 66 Dis[s] = Cost[s] = 0; 67 } 68 69 void dijikstra() 70 { 71 priority_queue<PP> que; 72 PP te,nt; 73 te.to = s;te.dis = te.cost = 0; 74 que.push(te); 75 while(!que.empty()) 76 { 77 te = que.top(); 78 que.pop(); 79 unsigned int i; 80 if(Dis[te.to] < te.dis) continue; 81 if(Dis[te.to] == te.dis && Cost[te.to] < te.cost) continue; 82 for(i = 0 ;i < G[te.to].size();i++){ 83 nt.to = G[te.to][i].to; 84 nt.dis = G[te.to][i].dis; 85 nt.cost = G[te.to][i].cost; 86 if(Dis[nt.to] > Dis[te.to] + nt.dis){ 87 que.push(nt); 88 Dis[nt.to] = Dis[te.to] + nt.dis; 89 Cost[nt.to] = Cost[te.to] + nt.cost; 90 } 91 else if( (Dis[nt.to] == Dis[te.to] + nt.dis) && (Cost[nt.to] > Cost[te.to] + nt.cost) ){ 92 que.push(nt); 93 Dis[nt.to] = Dis[te.to] + nt.dis; 94 Cost[nt.to] = Cost[te.to] + nt.cost; 95 } 96 } 97 } 98 } 99 100 int main() 101 { 102 //freopen("in.txt","r",stdin); 103 //scanf("%d",&T); 104 //for(int ccnt=1;ccnt<=T;ccnt++){ 105 while(scanf("%d%d",&n,&m)!=EOF){ 106 if(n == 0 && m == 0) break; 107 ini(); 108 dijikstra(); 109 printf("%I64d %I64d\n",Dis[t],Cost[t]); 110 } 111 return 0; 112 }