Easy!
题目描述:
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例:
给定如下二叉树,以及目标和 sum = 22
,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
返回 true
, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2
。
解题思路:
这道求二叉树的路径需要用深度优先算法DFS的思想来遍历每一条完整的路径,也就是利用递归不停找子节点的左右子节点,而调用递归函数的参数只有当前节点和sum值。
首先,如果输入的是一个空节点,则直接返回false,如果如果输入的只有一个根节点,则比较当前根节点的值和参数sum值是否相同,若相同,返回true,否则false。 这个条件也是递归的终止条件。
下面我们就要开始递归了,由于函数的返回值是Ture/False,我们可以同时两个方向一起递归,中间用或||连接,只要有一个是True,整个结果就是True。递归左右节点时,这时候的sum值应该是原sum值减去当前节点的值。
C++解法一:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode *root, int sum) {
if (root == NULL) return false;
if (root->left == NULL && root->right == NULL && root->val == sum ) return true;
return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);
}
};