题目链接
1497: [NOI2006]最大获利
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 4307 Solved: 2108
[ Submit][ Status][ Discuss]
Description
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)
Input
输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。
Output
你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。
Sample Input
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3
Sample Output
HINT
【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。
题解:
这一题是最大权闭合图典型用法,可以参见胡伯涛论文
关于这一题的另一种理解,可以参见2016集训队论文集
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int INF=0x3fffffff; const int MAXN=60000+100;//点数的最大值 const int MAXM=5000+30*50000+500;//边数的最大值 struct Node { int from,to,next; int cap; }edge[MAXM]; int tol; int dep[MAXN];//dep为点的层次 int head[MAXN]; void init() { tol=0; memset(head,-1,sizeof(head)); } void addedge(int u,int v,int w)//第一条边下标必须为偶数 { edge[tol].from=u; edge[tol].to=v; edge[tol].cap=w; edge[tol].next=head[u]; head[u]=tol++; edge[tol].from=v; edge[tol].to=u; edge[tol].cap=0; edge[tol].next=head[v]; head[v]=tol++; } int BFS(int start,int end) { int que[MAXN]; int front,rear; front=rear=0; memset(dep,-1,sizeof(dep)); que[rear++]=start; dep[start]=0; while(front!=rear) { int u=que[front++]; if(front==MAXN)front=0; for(int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].to; if(edge[i].cap>0&&dep[v]==-1) { dep[v]=dep[u]+1; que[rear++]=v; if(rear>=MAXN)rear=0; if(v==end)return 1; } } } return 0; } int dinic(int start,int end) { int res=0; int top; int stack[MAXN];//stack为栈,存储当前增广路 int cur[MAXN];//存储当前点的后继 while(BFS(start,end)) { memcpy(cur,head,sizeof(head)); int u=start; top=0; while(1) { if(u==end) { int min=INF; int loc; for(int i=0;i<top;i++) if(min>edge[stack[i]].cap) { min=edge[stack[i]].cap; loc=i; } for(int i=0;i<top;i++) { edge[stack[i]].cap-=min; edge[stack[i]^1].cap+=min; } res+=min; top=loc; u=edge[stack[top]].from; } for(int i=cur[u];i!=-1;cur[u]=i=edge[i].next) if(edge[i].cap!=0&&dep[u]+1==dep[edge[i].to]) break; if(cur[u]!=-1) { stack[top++]=cur[u]; u=edge[cur[u]].to; } else { if(top==0)break; dep[u]=-1; u=edge[stack[--top]].from; } } } return res; } int main() { int n,m; scanf("%d%d",&n,&m); init(); int start=0,end=n+m+1; for(int i=1;i<=n;i++) { int p; scanf("%d",&p); addedge(start,i,p); } int ans=0; for(int i=1;i<=m;i++) { int u,v,w; scanf("%d%d%d",&u,&v,&w); ans+=w; addedge(u,n+i,INF); addedge(v,n+i,INF); addedge(n+i,end,w); } ans-=dinic(start,end); printf("%d\n",ans); }