迭代法之解析

时间:2022-01-06 04:24:21

军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是A>B,B>A交替出现。但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B = A操作),然后A 再前进占领新的位置,B再跟上……直到占领所有的阵地,前进结束。像这种两个数一前一后逐步向某个位置逼近的方法称之为迭代法。
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
利用迭代算法解决问题,需要做好以下三个方面的工作: 
一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 
二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 
三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。
最经典的迭代算法是欧几里德算法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理: 
定理:gcd(a, b) = gcd(b, a mod b) 
证明:a可以表示成a = kb + r,则r = a mod b 。假设d是a,b的一个公约数,则有 d%a==0, d%b==0,而r = a - kb,因此d%r==0 ,因此d是(b, a mod b)的公约数 
同理,假设d 是(b, a mod b)的公约数,则 d%b==0 , d%r==0 ,但是a = kb +r ,因此d也是(a,b)的公约数 。
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。 
欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止的步骤,这实际上是一个循环结构。其算法用C语言描述为: 
int Gcd_2(int a, int b)// 欧几里德算法求a, b的最大公约数
{
    if (a<=0 || b<=0)  //预防错误 
            return 0;
    int temp;
    while (b > 0)  //b总是表示较小的那个数,若不是则交换a,b的值
    {
        temp = a % b;  //迭代关系式
        a = b;  //a是那个胆小鬼,始终跟在b的后面
        b = temp;  //b向前冲锋占领新的位置
    }
    return a;
}
从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b;  根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前冲的先锋。
还有一个很典型的例子是斐波那契(Fibonacci)数列。斐波那契数列为:0、1、1、2、3、5、8、13、21、…,即 fib(1)=2; fib(2)=1;  fib(n)=fib(n-1)+fib(n-2) (当n>2时)。
在n>2时,fib(n)总可以由fib(n-1)和fib(n-2)得到,由旧值递推出新值,这是一个典型的迭代关系,所以我们可以考虑迭代算法。
int Fib(int n) //斐波那契(Fibonacci)数列
{
    if (n < 1)//预防错误 
        return 0;
    if (n == 1 || n == 2)//特殊值,无需迭代 
        return 1;
        
    int f1 = 1, f2 = 1, fn;//迭代变量 
    int i;
    for(i=3; i<=n; ++i)//用i的值来限制迭代的次数 
    {
        fn = f1 + f2; //迭代关系式
        f1 = f2;  //f1和f2迭代前进,其中f2在f1的前面 
        f2 = fn;
    }
    return fn; 

}



有一种迭代方法叫牛顿迭代法,是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式 x(n+1) = g(x(n)) =  x(n)–f(x(n))/f‘(x(n)).然后按以下步骤执行:
(1) 选一个方程的近似根,赋给变量x1;
(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;
(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就
认为是方程的根。
例1:已知f(x) = cos(x) - x。 x的初值为3.14159/4,用牛顿法求解方程f(x)=0的近似值,要求精确到10E-6。
算法分析:f(x)的Newton代法构造方程为:x(n+1) = xn - (cos(xn)-xn) / (-sin(xn)-1)。
#include<stdio.h>


double F1(double x); //要求解的函数
double F2(double x); //要求解的函数的一阶导数函数  
double Newton(double x0, double e);//通用Newton迭代子程序
int main()
{
    double x0 = 3.14159/4;
    double e = 10E-6;
    
    printf("x = %f\n", Newton(x0, e));
    getchar();
    return 0;       
}
double F1(double x) //要求解的函数   
{   
    return  cos(x) - x;   
}   
double F2(double x) //要求解的函数的一阶导数函数   
{   
    return  -sin(x) - 1;   
}   
double Newton(double x0, double e)//通用Newton迭代子程序   
{   
    double  x1;   


    do
    {   
        x1 = x0;    
        x0 = x1 - F1(x1) / F2(x1);   
    } while (fabs(x0 - x1) > e);   
          
    return x0;   //若返回x0和x1的平均值则更佳 
}   
例2:用牛顿迭代法求方程x^2 - 5x + 6 = 0,要求精确到10E-6。   
算法分析:取x0 = 100; 和 x0 = -100;    
f(x)的Newton代法构造方程为: x(n+1) = xn - (xn*xn – 5*xn + 6) / (2*xn - 5)  


#include<stdio.h>
double F1(double x); //要求解的函数
double F2(double x); //要求解的函数的一阶导数函数  
double Newton(double x0, double e);//通用Newton迭代子程序


int main()
{
    double x0;
    double e = 10E-6;
    x0 = 100;
    printf("x = %f\n", Newton(x0, e));
    x0 = -100;
    printf("x = %f\n", Newton(x0, e));
    getchar();
    return 0;       
}
double F1(double x) //要求解的函数   
{   
    return  x * x - 5 * x + 6;
}    
double F2(double x) //要求解的函数的一阶导数函数   
{   
    return  2 * x - 5;
}   
double Newton(double x0, double e)//通用Newton迭代子程序   
{   
    double  x1;   
    do {   
        x1 = x0;   
        x0 = x1 - F1(x1) / F2(x1);   
    } while (fabs(x0 - x1) > e);   
          
return (x0 + x1) * 0.5;   
}    
具体使用迭代法求根时应注意以下两种可能发生的情况:
  (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;
  (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导
致迭代失败。选初值时应使:|df(x)/dx|<1,|df(x)/dx|越小收敛速度越快!  

练习:
1.验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2; 若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。
要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。


2.阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内,45分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴2^20个。试问,开始的时候往容器内放了多少个阿米巴?请编程序算出。


3.五只猴子一起摘了一堆桃子,因为太累了,它们商量决定,先睡一觉再分.一会其中的一只猴子来了,它见别的猴子没来,便将这堆桃子平均分成5份 ,结果多了一个,就将多的这个吃了,并拿走其中的一份.一会儿,第2只猴子来了,他不知道已经有一个同伴来过,还以为自己是第一个到的呢,于是将地上的桃子堆起来,再一次平均分成5份,发现也多了一个,同样吃了这1个,并拿走其中一份.接着来的第3,第4,第5只猴子都是这样做的.......,
根据上面的条件,问这5只猴子至少摘了多少个桃子?第5只猴子走后还剩下多少个桃子?


4. 用牛顿迭代法求方程x^2 = 45, 要求精确到10E-6。
提示:取x0 = -6; 和 x0 = 6;
f(x)的Newton代法构造方程为:   x(n+1) = xn - (xn*xn - 45) / (2*xn)



参考答案:
1.#include<stdio.h>
#include<stdlib.h>


int main()
{
    int n;
 
    puts("input n: ");
    scanf("%d", &n);
    
    puts("过程:");
    printf("%d -> ", n);
    
    while (n != 1)
    {
        if (0 == (n&1))
            n = n / 2; //迭代关系式
        else
            n = n * 3 + 1; //迭代关系式


        printf("%d -> ", n);
    }
    printf("\b\b\b\b    \n");//去掉多余的“ -> ” 
    system("pause");
    return 0;       
}


2. 算法分析: 根据题意,阿米巴每3分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到45分钟后充满容器,需要分裂 45/3=15 次。而"容器最多可以装阿米巴2^20个",
即阿米巴分裂15次以后得到的个数是2^20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第15次分裂之后的2^20个,倒推出第15次分裂之前(即第14次分裂之后)的个数,再进一步倒推出第13次分裂之后、第12次分裂之后、……第1次分裂之前的个数。 设第1次分裂之前的个数为x0 、第1次分裂之后的个数为x1 、第2次分裂之后的个数为x2 、……
第15次分裂之后的个数为x(15),则有x(14)=x(15)/2,x(13)=x(14)/2,……x(n-1)=x(n)/2 (n >= 1) 因为第15次分裂之后的个数x(15)是已知的,如果定义迭代变量为x ,则可以将上面的倒推公式转换成如下的迭代公式: x=x/2 (x的初值为第15次分裂之后的个数2^20)让这个迭代公式重复执行15次,就可以倒推出第1次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。


#include<stdio.h>
#include<math.h>


int main()
{
    int max = pow(2, 20);
    int n = 15;
    int i;
    int s = max;
    
    for (i=1; i<=n; i++)
    {
        s /= 2;
    }
 
    printf("开始的时候往容器内放了%d个阿米巴\n", s);
    
    getchar();
    return 0;       
}


3. 算法分析:先要找一下第N只猴子和其面前桃子数的关系。如果从第1只开始往第5只找,不好找,但如果思路一变,从第N到第1去,可得出下面的推导式:
第N只猴   第N只猴前桃子数目
6          s6=x, 即最后剩下的桃子数 
5          s5=s6*5/4+1
4          s4=s5*5/4+1
3          s3=s4*5/4+1
2          s2=s3*5/4+1
1          s1=s2*5/4+1, 即最初的桃子数 
s1即为所求。上面的规律中只要将s1-s5的下标去掉:
s=x
s=s*5/4+1
s=s*5/4+1
s=s*5/4+1
s=s*5/4+1
s=s*5/4+1
很显然,这是一种迭代,所以可以用循环语句加以解决。
综观程序的整体结构,最外是一个循环,因为循环次数不定,可以使用While循环,其结束条件则是找到第一个符合条件的数。为了做出上面while循环的结束条件,还需进一步分析上述规律的特点,要符合题目中的要求,s2-s6五个数必须全部能被4整除,而s1不能被4整除,这个可作为条件。具体实现请参看源程序。


#include <stdio.h>


int main(void)
{
    int x, s;
    int i;
   
    for(x=0; ;x+=4)
    {
        s = x;
        for (i=0; i<5; i++)
        {
            s = s * 5 / 4 + 1;
            if (s % 4)
                break;
        }
        if (i == 4)
            break;
    }
    
    printf("摘了%d个桃子, 剩下%d个桃子\n", s, x);
   
   getchar();
   return 0;   
}   


4. #include<stdio.h>


double F1(double x); //要求解的函数
double F2(double x); //要求解的函数的一阶导数函数  
double Newton(double x0, double e);//通用Newton迭代子程序


int main()
{
    double x0;
    double e = 10E-6;
    
    x0 = -6;
    printf("x = %f\n", Newton(x0, e));
    x0 = 6;
    printf("x = %f\n", Newton(x0, e));
    
    getchar();
    return 0;       
}


double F1(double x) //要求解的函数   
{   
    return  x * x - 45;
}   
    
double F2(double x) //要求解的函数的一阶导数函数   
{   
    return  2 * x;
}   
    
double Newton(double x0, double e)//通用Newton迭代子程序   
{   
    double  x1;   


    do
    {   
        x1 = x0;   
        x0 = x1 - F1(x1) / F2(x1);   
    } while (fabs(x0 - x1) > e);   
          
    return (x0 + x1) * 0.5;  
}