写在前面的话:
看了看自己的博客,从一月底开始就没怎么更新过,我也确实将近5个月没怎么写代码了。今天突然觉得有些心慌,感觉手都已经生疏了。果然,随便找了道题就卡住了。隐约感觉要用map但又不太记得用法了,知道可以用DFS或BFS却又理不清思路。费了两个小时,结果写了一个shit一样的代码才通过。唉好忧伤啊。
Clone an undirected graph. Each node in the graph contains a label
and a list of its neighbors
.
OJ's undirected graph serialization:
Nodes are labeled uniquely.
We use #
as a separator for each node, and ,
as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by #
.
- First node is labeled as
0
. Connect node0
to both nodes1
and2
. - Second node is labeled as
1
. Connect node1
to node2
. - Third node is labeled as
2
. Connect node2
to node2
(itself), thus forming a self-cycle.
Visually, the graph looks like the following:
1
/ \
/ \
0 --- 2
/ \
\_/
我的解法:
反应了好久,才发现题目的难点是防止结点的重复建立。我的方法没有用map,很繁琐。
#include<iostream>
#include<vector>
#include<algorithm>
#include<stdlib.h>
using namespace std; struct UndirectedGraphNode {
int label;
vector<UndirectedGraphNode *> neighbors;
UndirectedGraphNode(int x) : label(x) {};
};
class Solution {
public: UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
//获取所有独立的结点
vector<UndirectedGraphNode *> UniqueNodes;
getUniqueNodes(node, UniqueNodes); return findNode(node, UniqueNodes);
} //查找指定结点并返回
UndirectedGraphNode * findNode(UndirectedGraphNode * node, vector<UndirectedGraphNode *> UniqueNodes)
{
if(NULL == node)
return NULL;
for(int i = ; i < UniqueNodes.size(); i++)
{
if(node->label == UniqueNodes[i]->label)
{
return UniqueNodes[i];
}
}
return NULL;
} //获取图中所有的结点和连接信息
void getUniqueNodes(UndirectedGraphNode *node, vector<UndirectedGraphNode *>& UniqueNodes)
{
//结点空或已存在时直接返回
if(NULL == node || NULL != findNode(node, UniqueNodes))
return; //存储新出现的结点
UndirectedGraphNode * newNode = new UndirectedGraphNode(node->label);
UniqueNodes.push_back(newNode);
for(int i = ; i < node->neighbors.size(); i++)
{
getUniqueNodes(node->neighbors[i], UniqueNodes);
newNode->neighbors.push_back(findNode(node->neighbors[i], UniqueNodes));
}
}
}; int main()
{
Solution s; UndirectedGraphNode * node0 = new UndirectedGraphNode();
UndirectedGraphNode * node1 = new UndirectedGraphNode();
UndirectedGraphNode * node2 = new UndirectedGraphNode();
node0->neighbors.push_back(node1);
node0->neighbors.push_back(node2);
node1->neighbors.push_back(node2);
node2->neighbors.push_back(node2); UndirectedGraphNode * newNode = s.cloneGraph(node0);
return ;
}
网上大神解法
/**
* Definition for undirected graph.
* struct UndirectedGraphNode {
* int label;
* vector<UndirectedGraphNode *> neighbors;
* UndirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
private:
unordered_map<UndirectedGraphNode*,UndirectedGraphNode*> hash;
public:
//BFS
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
if(!node) return NULL;
queue<UndirectedGraphNode*> Qu;
Qu.push(node);
hash[node] = new UndirectedGraphNode(node->label);
while(!Qu.empty()){
UndirectedGraphNode * tmp = Qu.front();
Qu.pop();
for(UndirectedGraphNode * neighbor : tmp->neighbors){
if(hash.find(neighbor) == hash.end()){
hash[neighbor] = new UndirectedGraphNode(neighbor->label);
Qu.push(neighbor);
}
hash[tmp]->neighbors.push_back(hash[neighbor]);
}
}
return hash[node];
}
//DFS
UndirectedGraphNode *cloneGraph1(UndirectedGraphNode *node) {
if(!node) return NULL;
if(hash.find(node) == hash.end()){
hash[node] = new UndirectedGraphNode(node->label);
for(UndirectedGraphNode* neighbor : node->neighbors){
hash[node]->neighbors.push_back(cloneGraph1(neighbor));
}
}
return hash[node];
}
};