【Leetcode】Triangle

时间:2022-03-11 04:07:17

给定一个由数字组成的三角形,从顶至底找出路径最小和。

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, wheren is the total number of rows in the triangle.

思路一:递归,要求以某个数为起点的最小和,可以先求出以跟它相邻的下一层的两个数为起点的最小和,然后取两者的更小者,最后与该数相加即可。基于此可以写出下面的代码:

class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle)
{
// Start typing your C/C++ solution below
// DO NOT write int main() function
return minimumTotal(triangle,0,0);
} int minimumTotal(vector<vector<int> > &triangle, int i, int j)
{
if(i == triangle.size()-1)
return triangle[i][j]; int sum0 = minimumTotal(triangle,i+1,j);
int sum1 = minimumTotal(triangle,i+1,j+1); return min(sum0,sum1) + triangle[i][j];
}
};

可以看到代码简洁易懂,不过在Judge large时超时,原因是重复计算了很多子问题,优化它的思路就是用DP,思想是把先把子问题计算好,供查询使用。下面贴上优化的代码:

class Solution
{
public:
int minimumTotal(vector<vector<int> > &triangle)
{
// Start typing your C/C++ solution below
// DO NOT write int main() function
// 分配空间
int numRow = triangle.size();
vector<vector<int> > ibuffer;
ibuffer.resize(numRow);
for (int i=0; i<numRow; ++i)
ibuffer[i].resize(numRow); // 从底到顶计算最小和
for (int i=numRow-1; i>=0; --i)
{
vector<int> &row = triangle[i]; for (int j=0; j<row.size(); ++j)
{
if(i==numRow-1)
ibuffer[i][j] = row[j];
else
ibuffer[i][j] = min(row[j]+ibuffer[i+1][j], row[j]+ibuffer[i+1][j+1]);
}
} return ibuffer[0][0];
}
};

上面的代码可以通过Large judge。不过开了一个n*n大小的二维数组,因此空间复杂度为O(n^2),n为三角形的层数。进一步观察发现,开二维数组没有必要,因为每次计算只会查询下一层的计算结果,下下层及更后层的计算结果不会使用到,因此可以只开个大小为n的一维数组就可以了。最终代码如下:

class Solution
{
public:
int minimumTotal(vector<vector<int> > &triangle)
{
// Start typing your C/C++ solution below
// DO NOT write int main() function
// 分配空间
int numRow = triangle.size();
vector<int> ibuffer;
ibuffer.resize(numRow); // 从底到顶计算最小和
for (int i=numRow-1; i>=0; --i)
{
vector<int> &row = triangle[i]; for (int j=0; j<row.size(); ++j)
{
if(i==numRow-1)
ibuffer[j] = row[j];
else
ibuffer[j] = min(row[j]+ibuffer[j], row[j]+ibuffer[j+1]);
}
} return ibuffer[0];
}
};

空间复杂度为O(n),n为三角形的层数,时间复杂度为O(K),K为整个三角形中数字的个数。