转自 http://blog.csdn.net/softwave/article/details/4166598
集合类说明及区别
Collection
├List
│├LinkedList
│├ArrayList
│└Vector
│ └Stack
└Set
Map
├Hashtable
├HashMap
└WeakHashMap
Collection接口
Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素(Elements)。一些Collection允许相同的元素而另一些不行。一些能排序而另一些不行。Java SDK不提供直接继承自Collection的类,JavaSDK提供的类都是继承自Collection的“子接口”如List和Set。
所有实现Collection接口的类都必须提供两个标准的构造函数:无参数的构造函数用于创建一个空的Collection,有一个Collection参数的构造函数用于创建一个新的Collection,这个新的Collection与传入的Collection有相同的元素。后一个构造函数允许用户复制一个Collection。
如何遍历Collection中的每一个元素?不论Collection的实际类型如何,它都支持一个iterator()的方法,该方法返回一个迭代子,使用该迭代子即可逐一访问Collection中每一个元素。典型的用法如下:
Iterator it = collection.iterator(); // 获得一个迭代子
while(it.hasNext()) {
Object obj = it.next(); // 得到下一个元素
}
由Collection接口派生的两个接口是List和Set。
List接口
List是有序的Collection,使用此接口能够精确的控制每个元素插入的位置。用户能够使用索引(元素在List中的位置,类似于数组下标)来访问List中的元素,这类似于Java的数组。
和下面要提到的Set不同,List允许有相同的元素。
除了具有Collection接口必备的iterator()方法外,List还提供一个listIterator()方法,返回一个ListIterator接口,和标准的Iterator接口相比,ListIterator多了一些add()之类的方法,允许添加,删除,设定元素,还能向前或向后遍历。
实现List接口的常用类有LinkedList,ArrayList,Vector和Stack。
LinkedList类
LinkedList实现了List接口,允许null元素。此外LinkedList提供额外的get,remove,insert方法在LinkedList的首部或尾部。这些操作使LinkedList可被用作堆栈(stack),队列(queue)或双向队列(deque)。
注意LinkedList没有同步方法。如果多个线程同时访问一个List,则必须自己实现访问同步。一种解决方法是在创建List时构造一个同步的List:
List list = Collections.synchronizedList(new LinkedList(...));
ArrayList类
ArrayList实现了可变大小的数组。它允许所有元素,包括null。ArrayList没有同步。
size,isEmpty,get,set方法运行时间为常数。但是add方法开销为分摊的常数,添加n个元素需要O(n)的时间。其他的方法运行时间为线性。
每个ArrayList实例都有一个容量(Capacity),即用于存储元素的数组的大小。这个容量可随着不断添加新元素而自动增加,但是增长算法并没有定义。当需要插入大量元素时,在插入前可以调用ensureCapacity方法来增加ArrayList的容量以提高插入效率。
和LinkedList一样,ArrayList也是非同步的(unsynchronized)。
Vector类
Vector非常类似ArrayList,但是Vector是同步的。由Vector创建的Iterator,虽然和ArrayList创建的Iterator是同一接口,但是,因为Vector是同步的,当一个Iterator被创建而且正在被使用,另一个线程改变了Vector的状态(例如,添加或删除了一些元素),这时调用Iterator的方法时将抛出ConcurrentModificationException,因此必须捕获该异常。
Stack 类
Stack继承自Vector,实现一个后进先出的堆栈。Stack提供5个额外的方法使得Vector得以被当作堆栈使用。基本的push和pop方法,还有peek方法得到栈顶的元素,empty方法测试堆栈是否为空,search方法检测一个元素在堆栈中的位置。Stack刚创建后是空栈。
Set接口
Set是一种不包含重复的元素的Collection,即任意的两个元素e1和e2都有e1.equals(e2)=false,Set最多有一个null元素。
很明显,Set的构造函数有一个约束条件,传入的Collection参数不能包含重复的元素。
请注意:必须小心操作可变对象(Mutable Object)。如果一个Set中的可变元素改变了自身状态导致Object.equals(Object)=true将导致一些问题。
Map接口
请注意,Map没有继承Collection接口,Map提供key到value的映射。一个Map中不能包含相同的key,每个key只能映射一个value。Map接口提供3种集合的视图,Map的内容可以被当作一组key集合,一组value集合,或者一组key-value映射。
Hashtable类
Hashtable继承Map接口,实现一个key-value映射的哈希表。任何非空(non-null)的对象都可作为key或者value。
添加数据使用put(key, value),取出数据使用get(key),这两个基本操作的时间开销为常数。
Hashtable通过initial capacity和load factor两个参数调整性能。通常缺省的load factor0.75较好地实现了时间和空间的均衡。增大load factor可以节省空间但相应的查找时间将增大,这会影响像get和put这样的操作。
使用Hashtable的简单示例如下,将1,2,3放到Hashtable中,他们的key分别是”one”,”two”,”three”:
Hashtable numbers = new Hashtable();
numbers.put(“one”, new Integer(1));
numbers.put(“two”, new Integer(2));
numbers.put(“three”, new Integer(3));
要取出一个数,比如2,用相应的key:
Integer n = (Integer)numbers.get(“two”);
System.out.println(“two = ” + n);
由于作为key的对象将通过计算其散列函数来确定与之对应的value的位置,因此任何作为key的对象都必须实现hashCode和equals方法。hashCode和equals方法继承自根类Object,如果你用自定义的类当作key的话,要相当小心,按照散列函数的定义,如果两个对象相同,即obj1.equals(obj2)=true,则它们的hashCode必须相同,但如果两个对象不同,则它们的hashCode不一定不同,如果两个不同对象的hashCode相同,这种现象称为冲突,冲突会导致操作哈希表的时间开销增大,所以尽量定义好的hashCode()方法,能加快哈希表的操作。
如果相同的对象有不同的hashCode,对哈希表的操作会出现意想不到的结果(期待的get方法返回null),要避免这种问题,只需要牢记一条:要同时复写equals方法和hashCode方法,而不要只写其中一个。
Hashtable是同步的。
HashMap类
HashMap和Hashtable类似,不同之处在于HashMap是非同步的,并且允许null,即null value和nullkey。,但是将HashMap视为Collection时(values()方法可返回Collection),其迭代子操作时间开销和HashMap的容量成比例。因此,如果迭代操作的性能相当重要的话,不要将HashMap的初始化容量设得过高,或者load factor过低。
WeakHashMap类
WeakHashMap是一种改进的HashMap,它对key实行“弱引用”,如果一个key不再被外部所引用,那么该key可以被GC回收。
总结
如果涉及到堆栈,队列等操作,应该考虑用List,对于需要快速插入,删除元素,应该使用LinkedList,如果需要快速随机访问元素,应该使用ArrayList。
如果程序在单线程环境中,或者访问仅仅在一个线程中进行,考虑非同步的类,其效率较高,如果多个线程可能同时操作一个类,应该使用同步的类。
要特别注意对哈希表的操作,作为key的对象要正确复写equals和hashCode方法。
尽量返回接口而非实际的类型,如返回List而非ArrayList,这样如果以后需要将ArrayList换成LinkedList时,客户端代码不用改变。这就是针对抽象编程。
同步性
Vector是同步的。这个类中的一些方法保证了Vector中的对象是线程安全的。而ArrayList则是异步的,因此ArrayList中的对象并不是线程安全的。因为同步的要求会影响执行的效率,所以如果你不需要线程安全的集合那么使用ArrayList是一个很好的选择,这样可以避免由于同步带来的不必要的性能开销。
数据增长
从内部实现机制来讲ArrayList和Vector都是使用数组(Array)来控制集合中的对象。当你向这两种类型中增加元素的时候,如果元素的数目超出了内部数组目前的长度它们都需要扩展内部数组的长度,Vector缺省情况下自动增长原来一倍的数组长度,ArrayList是原来的50%,所以最后你获得的这个集合所占的空间总是比你实际需要的要大。所以如果你要在集合中保存大量的数据那么使用Vector有一些优势,因为你可以通过设置集合的初始化大小来避免不必要的资源开销。
使用模式
在ArrayList和Vector中,从一个指定的位置(通过索引)查找数据或是在集合的末尾增加、移除一个元素所花费的时间是一样的,这个时间我们用O(1)表示。但是,如果在集合的其他位置增加或移除元素那么花费的时间会呈线形增长:O(n-i),其中n代表集合中元素的个数,i代表元素增加或移除元素的索引位置。为什么会这样呢?以为在进行上述操作的时候集合中第i和第i个元素之后的所有元素都要执行位移的操作。这一切意味着什么呢?
这意味着,你只是查找特定位置的元素或只在集合的末端增加、移除元素,那么使用Vector或ArrayList都可以。如果是其他操作,你最好选择其他的集合操作类。比如,LinkList集合类在增加或移除集合中任何位置的元素所花费的时间都是一样的?O(1),但它在索引一个元素的使用缺比较慢-O(i),其中i是索引的位置.使用ArrayList也很容易,因为你可以简单的使用索引来代替创建iterator对象的操作。LinkList也会为每个插入的元素创建对象,所有你要明白它也会带来额外的开销。
最后,在《Practical Java》一书中PeterHaggar建议使用一个简单的数组(Array)来代替Vector或ArrayList。尤其是对于执行效率要求高的程序更应如此。因为使用数组(Array)避免了同步、额外的方法调用和不必要的重新分配空间的操作。
相互区别
Vector和ArrayList
1,vector是线程同步的,所以它也是线程安全的,而arraylist是线程异步的,是不安全的。如果不考虑到线程的安全因素,一般用
arraylist效率比较高。
2,如果集合中的元素的数目大于目前集合数组的长度时,vector增长率为目前数组长度的100%,而arraylist增长率为目前数组长度
的50%.如过在集合中使用数据量比较大的数据,用vector有一定的优势。
3,如果查找一个指定位置的数据,vector和arraylist使用的时间是相同的,都是0(1),这个时候使用vector和arraylist都可以。而
如果移动一个指定位置的数据花费的时间为0(n-i)n为总长度,这个时候就应该考虑到使用linklist,因为它移动一个指定位置的数据
所花费的时间为0(1),而查询一个指定位置的数据时花费的时间为0(i)。
ArrayList和Vector是采用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,都允许直接序号索引元素,但是插入数据要设计到数组元素移动等内存操作,所以索引数据快插入数据慢,Vector由于使用了synchronized方法(线程安全)所以性能上比ArrayList要差,LinkedList使用双向链表实现存储,按序号索引数据需要进行向前或向后遍历,但是插入数据时只需要记录本项的前后项即可,所以插入数度较快!
arraylist和linkedlist
1.ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构。
2.对于随机访问get和set,ArrayList觉得优于LinkedList,因为LinkedList要移动指针。
3.对于新增和删除操作add和remove,LinedList比较占优势,因为ArrayList要移动数据。
这一点要看实际情况的。若只对单条数据插入或删除,ArrayList的速度反而优于LinkedList。但若是批量随机的插入删除数据,LinkedList的速度大大优于ArrayList. 因为ArrayList每插入一条数据,要移动插入点及之后的所有数据。
HashMap与TreeMap
(注)
文章出处:http://www.diybl.com/course/3_program/java/javaxl/200875/130233.html
1、HashMap通过hashcode对其内容进行快速查找,而TreeMap中所有的元素都保持着某种固定的顺序,如果你需要得到一个有序的结果你就应该使用TreeMap(HashMap中元素的排列顺序是不固定的)。
HashMap中元素的排列顺序是不固定的)。
2、 HashMap通过hashcode对其内容进行快速查找,而TreeMap中所有的元素都保持着某种固定的顺序,如果你需要得到一个有序的结果你就应该使用TreeMap(HashMap中元素的排列顺序是不固定的)。集合框架”提供两种常规的Map实现:HashMap和TreeMap(TreeMap实现SortedMap接口)。
3、在Map 中插入、删除和定位元素,HashMap是最好的选择。但如果您要按自然顺序或自定义顺序遍历键,那么TreeMap会更好。使用HashMap要求添加的键类明确定义了hashCode()和equals()的实现。 这个TreeMap没有调优选项,因为该树总处于平衡状态。
结过研究,在原作者的基础上我还发现了一点,二树map一样,但顺序不一样,导致hashCode()不一样。
同样做测试:
在hashMap中,同样的值的map,顺序不同,equals时,false;
而在treeMap中,同样的值的map,顺序不同,equals时,true,说明,treeMap在equals()时是整理了顺序了的。
hashtable与hashmap
一.历史原因:Hashtable是基于陈旧的Dictionary类的,HashMap是Java 1.2引进的Map接口的一个实现
二.同步性:Hashtable是线程安全的,也就是说是同步的,而HashMap是线程序不安全的,不是同步的
三.值:只有HashMap可以让你将空值作为一个表的条目的key或value
==============================================================================================
线程同步并不一定就是线程安全的。
比如vector和hashtable,在多线程环境中,对同一个对象执行读取或删除操作时,可能导致错误。解决办法是,对该对象加同步,或者使用并发包中的concurrenthashmap等集合。
参见 http://www.ibm.com/developerworks/cn/java/j-jtp09263/
Java 理论与实践: 描绘线程安全性
简介: 7月份我们的并发专家 Brian Goetz 将Hashtable
和
Vector
类描述为“有条件线程安全的”。一个类难道不是线程安全就是线程不安全的吗?不幸的是,线程安全并不是一个非真即假的命题,它的定义出人意料的困难。但是,正如Brian 在本月的
Java 理论与实践中解释的,尽量在 Javadoc 中对类的线程安全性进行归类是非常重要的。
在 Joshua Bloch 的那本出色的 Effective Java Programming Language Guide(参阅 参考资料)一书中,第52 项的标题为“Document Thread Safety”,在其中他恳请开发人员准确地记录下类对线程安全性有哪些保证。就像 Bloch书中的大多数建议一样,这也是一个反复提到、但很少实现的非常好的建议(就像 Bloch 在其Programming Puzzlers谈话中说的“不要像我兄弟那样写代码”)。
有多少次您在 Javadoc 中查看一个类,并猜测“这个类是线程安全的吗?”。 由于缺少明确的记载,读者可能会对类的线程安全性做出不当的假设。也许他们将非线程安全的类假定为线程安全的(这真的很糟!),或者假设可以在调用一个对象的方法之前同步对象以得到线程安全性(这可能是正确的,也可能还不够,最差的情况是,可能只会提供虚幻的线程安全性)。不管在什么情况下,最好在文档中明确写明,在多个线程*享类的实例时类的行为是怎样的。
看一个这种问题的一个例子, java.text.SimpleDateFormat
类不是线程安全的,但是在 1.4JDK 之前这并没有记录在 Javadoc 中。有多少开发人员错误地创建了SimpleDateFormat
的静态实例,并在多个线程中使用它,同时不知道他们的程序在大负荷下是否能正确运行?不要对您的客户或者同事做这样的事情!
一定要在第一次编写类的时候记录线程安全性 -- 在编写它的时候访问类线程安全性需求和行为,要比在几个月后您(或者其他人)再回过头来看要容易得多。永远也不会比在编写它时更清楚地了解在一个实现中所发生的情况。此外,在编写类的时候记录线程安全性,可以使您对于线程安全性的最初想法得以保留,因为维护者希望看到这个记录成为类的说明的一部分。
如果线程安全性是类的一个二元属性就好了,您只需要记录类是线程安全还是线程不安全的。但是很不幸,它不是这么简单的。如果类不是线程安全的,是否可以在每次访问这个类的对象时通过同步使它成为线程安全的呢?是否有操作序列不能允许其他线程的介入,因而不仅需要对基本操作同步,而且对于复合操作也要同步呢?在包含需要自动执行的一组操作的方法之间是否有状态依赖关系呢?开发人员要在并发应用程序中使用一个类时需要掌握这些信息。
明确定义线程安全性出人意料地困难,大多数定义看上去完全是自我循环。快速搜索一下 Google,可以找到以下关于线程安全代码的典型的、但是没有多大帮助的定义(或者可以说是描述):
- ...可以从多个编程线程中调用,无需线程之间不必要的交互。
- ...可以同时被多个线程调用,不需要调用一方有任何操作。
有这样的定义,就不奇怪我们对于线程安全性会感到如此迷惑。这些定义比说“一个类在可以被多个线程安全调用时就是线程安全的”好不了多少,当然,它的意义就是如此,但是它不能帮助我们区分一个线程安全的类与一个线程不安全的类。安全的意义是什么呢?
实际上,所有线程安全的定义都有某种程序的循环,因为它必须符合类的规格说明 -- 这是对类的功能、其副作用、哪些状态是有效和无效的、不可变量、前置条件、后置条件等等的一种非正式的松散描述(由规格说明给出的对象状态约束只应用于外部可见的状态,即那些可以通过调用其公共方法和访问其公共字段看到的状态,而不应用于其私有字段中表示的内部状态)。
类要成为线程安全的,首先必须在单线程环境中有正确的行为。如果一个类实现正确(这是说它符合规格说明的另一种方式),那么没有一种对这个类的对象的操作序列(读或者写公共字段以及调用公共方法)可以让对象处于无效状态,观察到对象处于无效状态、或者违反类的任何不可变量、前置条件或者后置条件的情况。
此外,一个类要成为线程安全的,在被多个线程访问时,不管运行时环境执行这些线程有什么样的时序安排或者交错,它必须仍然有如上所述的正确行为,并且在调用的代码中没有任何额外的同步。其效果就是,在所有线程看来,对于线程安全对象的操作是以固定的、全局一致的顺序发生的。
正确性与线程安全性之间的关系非常类似于在描述 ACID(原子性、一致性、独立性和持久性)事务时使用的一致性与独立性之间的关系:从特定线程的角度看,由不同线程所执行的对象操作是先后(虽然顺序不定)而不是并行执行的。
考虑下面的代码片段,它迭代一个 Vector
中的元素。尽管 Vector
的所有方法都是同步的,但是在多线程的环境中不做额外的同步就使用这段代码仍然是不安全的,因为如果另一个线程恰好在错误的时间里删除了一个元素,则get()
会抛出一个 ArrayIndexOutOfBoundsException
。
Vector v = new Vector(); |
这里发生的事情是: get(index)
的规格说明里有一条前置条件要求 index
必须是非负的并且小于size()
。但是,在多线程环境中,没有办法可以知道上一次查到的 size()
值是否仍然有效,因而不能确定i<size()
,除非在上一次调用了 size()
后独占地锁定 Vector
。
更明确地说,这一问题是由 get()
的前置条件是以 size()
的结果来定义的这一事实所带来的。只要看到这种必须使用一种方法的结果作为另一种讲法的输入条件的样式,它就是一个状态依赖,就必须保证至少在调用这两种方法期间元素的状态没有改变。一般来说,做到这一点的唯一方法在调用第一个方法之前是独占性地锁定对象,一直到调用了后一种方法以后。在上面的迭代Vector
元素的例子中,您需要在迭代过程中同步 Vector
对象。
如上面的例子所示,线程安全性不是一个非真即假的命题。 Vector
的方法都是同步的,并且 Vector
明确地设计为在多线程环境中工作。但是它的线程安全性是有限制的,即在某些方法之间有状态依赖(类似地,如果在迭代过程中Vector
被其他线程修改,那么由 Vector.iterator()
返回的 iterator 会抛出 ConcurrentModificationException
)。
对于 Java 类中常见的线程安全性级别,没有一种分类系统可被广泛接受,不过重要的是在编写类时尽量记录下它们的线程安全行为。
Bloch 给出了描述五类线程安全性的分类方法:不可变、线程安全、有条件线程安全、线程兼容和线程对立。只要明确地记录下线程安全特性,那么您是否使用这种系统都没关系。这种系统有其局限性-- 各类之间的界线不是百分之百地明确,而且有些情况它没照顾到 -- 但是这套系统是一个很好的起点。这种分类系统的核心是调用者是否可以或者必须用外部同步包围操作(或者一系列操作)。下面几节分别描述了线程安全性的这五种类别。
本栏目的普通读者听到我赞美不可变性的优点时不会感到意外。不可变的对象一定是线程安全的,并且永远也不需要额外的同步。因为一个不可变的对象只要构建正确,其外部可见状态永远也不会改变,永远也不会看到它处于不一致的状态。Java类库中大多数基本数值类如Integer
、 String
和 BigInteger
都是不可变的。
线程安全的对象具有在上面“线程安全”一节中描述的属性 -- 由类的规格说明所规定的约束在对象被多个线程访问时仍然有效,不管运行时环境如何排列,线程都不需要任何额外的同步。这种线程安全性保证是很严格的-- 许多类,如Hashtable
或者 Vector
都不能满足这种严格的定义。
我们在 7 月份的文件“ 并发集合类”中讨论了有条件的线程安全。有条件的线程安全类对于单独的操作可以是线程安全的,但是某些操作序列可能需要外部同步。条件线程安全的最常见的例子是遍历由Hashtable
或者 Vector
或者返回的迭代器 -- 由这些类返回的 fail-fast迭代器假定在迭代器进行遍历的时候底层集合不会有变化。为了保证其他线程不会在遍历的时候改变集合,进行迭代的线程应该确保它是独占性地访问集合以实现遍历的完整性。通常,独占性的访问是由对锁的同步保证的-- 并且类的文档应该说明是哪个锁(通常是对象的内部监视器(intrinsic monitor))。
如果对一个有条件线程安全类进行记录,那么您应该不仅要记录它是有条件线程安全的,而且还要记录必须防止哪些操作序列的并发访问。用户可以合理地假设其他操作序列不需要任何额外的同步。
线程兼容类不是线程安全的,但是可以通过正确使用同步而在并发环境中安全地使用。这可能意味着用一个 synchronized
块包围每一个方法调用,或者创建一个包装器对象,其中每一个方法都是同步的(就像Collections.synchronizedList()
一样)。也可能意味着用 synchronized
块包围某些操作序列。为了最大程度地利用线程兼容类,如果所有调用都使用同一个块,那么就不应该要求调用者对该块同步。这样做会使线程兼容的对象作为变量实例包含在其他线程安全的对象中,从而可以利用其所有者对象的同步。
许多常见的类是线程兼容的,如集合类 ArrayList
和 HashMap
、 java.text.SimpleDateFormat
、或者JDBC 类Connection
和 ResultSet
。
线程对立类是那些不管是否调用了外部同步都不能在并发使用时安全地呈现的类。线程对立很少见,当类修改静态数据,而静态数据会影响在其他线程中执行的其他类的行为,这时通常会出现线程对立。线程对立类的一个例子是调用System.setOut()
的类。
线程安全类(以及线程安全性程度更低的的类) 可以允许或者不允许调用者锁定对象以进行独占性访问。 Hashtable
类对所有的同步使用对象的内部监视器,但是ConcurrentHashMap
类不是这样,事实上没有办法锁定一个 ConcurrentHashMap
对象以进行独占性访问。除了记录线程安全程序,还应该记录是否某些锁 -- 如对象的内部锁 --对类的行为有特殊的意义。
通过将类记录为线程安全的(假设它确实 是线程安全的),您就提供了两种有价值的服务:您告知类的维护者不要进行会影响其线程安全性的修改或者扩展,您还告知类的用户使用它时可以不使用外部同步。通过将类记录为线程兼容或者有条件线程安全的,您就告知了用户这个类可以通过正确使用同步而安全地在多线程中使用。通过将类记录为线程对立的,您就告知用户即使使用了外部同步,他们也不能在多线程中安全地使用这个类。不管是哪种情况,您都在潜在的严重问题出现之前防止了它们,而要查找和修复这些问题是很昂贵的。
一个类的线程安全行为是其规格说明中的固有部分,应该成为其文档的一部分。因为(还)没有描述类的线程安全行为的声明式方式,所以必须用文字描述。虽然Bloch 的描述类的线程安全程度的五层系统没有涵盖所有可能的情况,但是它是一个很好的起点。如果每一个类都将这种线程行为的程度加入到其 Javadoc中,那么可以肯定的是我们大家都会受益。
- 您可以参阅本文在 developerWorks 全球站点上的 英文原文.
- 请在 讨论论坛上参与本文的讨论。(您也可以单击文章顶部或底部的 讨论来访问论坛。)
- 阅读 Brian Goetz 的 Java理论与实践 系列的全部文章。特别是与本栏有关的下列部分:
- “ 我必须对那些内容进行文档编制吗?” (2002 年 8 月),它提供了 Javadoc 的实例。
- “ 变还是不变?” (2003 年 2 月),它讨论了不变性对于线程安全的好处。
- “ 并发集合类”(2003 年 7 月),它分析了可伸缩性的瓶颈以及如何在共享数据结构中达到更高的并发和吞吐量。
- 在“ UnderstandingJTS, part 1”( developerWorks,2002 年 3 月)中比较了线程安全性的特征与隔离的定义。
- Doug Lea 的 ConcurrentProgramming in Java, Second Edition (Addison-Wesley,1999 年)是一本谈论有关Java 应用程序中多线程编程的复杂问题的专著。
- Joshua Bloch 的 EffectiveJava Programming Language Guide (Addison-Wesley,2001 年)一书中的第52项“DocumentThread Safety”详细描述了这里所介绍的五级分类。
- Neel Kumar 的“ 编写有效的线程安全类( developerWorks,2000年4月)告诉您如何同时具有“效率”和“线程安全”。
- 在 developerWorksJava 技术专区上可以找到数百篇关于 Java 各个方面的文章。
Brian Goetz 在过去 15 年间一直是一位专业软件开发人员。他是 Quiotix的首席顾问,该公司是一家位于加利福尼亚州洛斯拉图斯(Los Altos)的软件开发和咨询公司,他还为几个 JCP 专家组工作。请参阅流行的业界出版物中Brian 的已经发表和即将发表的文章。可以通过brian@quiotix.com与 Brian 联系。