package com.uniclick.dapa.dstest;
import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
String inputFilePath = "/user/zhouyuanlong/wordcount/input/wordTest*.txt";
String outputFilePath = "/user/zhouyuanlong/wordcount/output/";
String queue = "default";
String jobName = "wordCount";
if(args == null || args.length < 2){
System.out.println("[-INPUT <inputFilePath>"
+ "[-OUTPUT <outputFilePath>");
}else{
for(int i=0;i<args.length;i++){
if("-Q".equals(args[i])){
queue = args[++i];
}
}
}
Configuration conf = new Configuration();
conf.set("mapred.job.queue.name", queue);
Job job = new Job(conf, jobName);
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
//job.setCombinerClass(cls);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(inputFilePath));
Path path = new Path(outputFilePath);
FileSystem fs = FileSystem.get(URI.create(outputFilePath), conf);
if(fs.exists(path)){
//fs.delete(path);
fs.delete(path, true);
}
FileOutputFormat.setOutputPath(job, new Path(outputFilePath));
System.exit(job.waitForCompletion(true) ? 1 : 0);
}
public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
private Text kt = new Text();
private final static IntWritable vt = new IntWritable(1);
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] arr = value.toString().split("\t");
for(int i = 0; i < arr.length; i++){
kt.set(arr[i]);
context.write(kt, vt);
}
}
}
public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
private IntWritable vt = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException{
int sum = 0;
for(IntWritable intVal : values){
sum += intVal.get();
}
vt.set(sum);
context.write(key, vt);
}
}
}
input目录中文件wordTest1.txt的内容(每行以table键分隔):
hello world
hello hadoop
hello mapredruce
input目录中文件wordTest2.txt的内容(每行以table键分隔):
hello world
hello hadoop
hello mapredruce
hdfs输出结果:
web 2
mapredruce 1
python 1
hadoop 1
hello 6
clojure 2
world 1
java 2
PS:对Hadoop自带的wordcount的例子略有改变