Spark使用ZooKeeper进行数据恢复的逻辑过程如下:
1.初始化:创建<CuratorFramwork,LeaderLatch,LeaderLatchListener>用于选举
创建CuratorFramework用于数据恢复。
2.选举:启动LeaderLatch,Curator开始接管选举工作了。
3.恢复:当某个Master被选举为Leader后,就会调用LeaderLatchListener的isLeader()方法,这个方法内部开始进行逻辑上的数据恢复工作,具体细节是这样的,向Master发送ElectedLeader消息,Master从ZooKeeperPersistenceEngine中读取数据到内存缓存中,ZooKeeperPersistenceEngine从ZooKeeper的/spark/master_status/目录下读取storedApps,storedDrivers,storedWorkers。
下面来进行一下源码的走读,方便日后回忆。
1.初始化:Master启动时创建ZooKeeperLeaderElectionAgent和 ZooKeeperPersistenceEngine,前者用于选举,后者用于数据恢复。
Master初始化源码如下:
case "ZOOKEEPER" =>
logInfo("Persisting recovery state to ZooKeeper")
val zkFactory =
new ZooKeeperRecoveryModeFactory(conf, SerializationExtension(context.system))
(zkFactory.createPersistenceEngine(), zkFactory.createLeaderElectionAgent(this))
private[master] class ZooKeeperRecoveryModeFactory(conf: SparkConf, serializer: Serialization)
extends StandaloneRecoveryModeFactory(conf, serializer) { def createPersistenceEngine(): PersistenceEngine = {
new ZooKeeperPersistenceEngine(conf, serializer)
} def createLeaderElectionAgent(master: LeaderElectable): LeaderElectionAgent = {
new ZooKeeperLeaderElectionAgent(master, conf)
}
}
private[master] class ZooKeeperPersistenceEngine(conf: SparkConf, val serialization: Serialization)
extends PersistenceEngine
with Logging { private val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/master_status"
//创建zookeeper客户端
private val zk: CuratorFramework = SparkCuratorUtil.newClient(conf) //创建WORKING_DIR目录
SparkCuratorUtil.mkdir(zk, WORKING_DIR)
}
创建ZooKeeperLeaderElectionAgent时会创建用于选举的CuratorFramwork,LeaderLatch,LeaderLatchListener。其中的LeaderLatch用于选举Leader,当某个LeaderLatch被选举为Leader之后,就会调用对应的LeaderLatchListener的isLeader(),如下:
private[master] class ZooKeeperLeaderElectionAgent(val masterActor: LeaderElectable,
conf: SparkConf) extends LeaderLatchListener with LeaderElectionAgent with Logging { val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/leader_election" private var zk: CuratorFramework = _
private var leaderLatch: LeaderLatch = _
private var status = LeadershipStatus.NOT_LEADER start() private def start() {
logInfo("Starting ZooKeeper LeaderElection agent")
zk = SparkCuratorUtil.newClient(conf)
leaderLatch = new LeaderLatch(zk, WORKING_DIR)
leaderLatch.addListener(this)
leaderLatch.start()
}
2.选举,调用LeaderLatch的start开始进行选举
3.数据恢复:如果某个master被成功选举为alive master,那么会调用isLeader()。这个方法内部会向Master发送ElectedLeader消息,然后Master会从ZookeeperPersistenceEngin中也就是ZooKeeper中读取storedApps,storedDrivers,storedWorkers并将他们恢复到内存缓存中去。
override def isLeader() {
synchronized {
// could have lost leadership by now.
if (!leaderLatch.hasLeadership) {
return
} logInfo("We have gained leadership")
updateLeadershipStatus(true)
}
}
private def updateLeadershipStatus(isLeader: Boolean) {
if (isLeader && status == LeadershipStatus.NOT_LEADER) {
status = LeadershipStatus.LEADER
masterActor.electedLeader()
} else if (!isLeader && status == LeadershipStatus.LEADER) {
status = LeadershipStatus.NOT_LEADER
masterActor.revokedLeadership()
}
}
开始真正的数据恢复工作:
case ElectedLeader => {
val (storedApps, storedDrivers, storedWorkers) = persistenceEngine.readPersistedData()
state = if (storedApps.isEmpty && storedDrivers.isEmpty && storedWorkers.isEmpty) {
RecoveryState.ALIVE
} else {
RecoveryState.RECOVERING
}
logInfo("I have been elected leader! New state: " + state)
if (state == RecoveryState.RECOVERING) {
beginRecovery(storedApps, storedDrivers, storedWorkers)
recoveryCompletionTask = context.system.scheduler.scheduleOnce(WORKER_TIMEOUT millis, self,
CompleteRecovery)
}
}
持久化数据存储在ZooKeeper中的/spark/master_status目录下。以app为例,当向ZooKeeperPersistenceEngine中写入app时,假设这个appId是1,那么就会创建一个/spark/master_status/app_1的持久化节点,节点数据内容就是序列化的app对象。
/spark/master_status
/app_appid
/worker_workerId
/driver_driverId