import java.util.Hashtable; class DLinkedList {
String key; //键
int value; //值
DLinkedList pre; //双向链表前驱
DLinkedList next; //双向链表后继
}
public class LRUCache {
private Hashtable<String,DLinkedList> cache = new Hashtable<String,DLinkedList>();
private int count;
private int capacity;
private DLinkedList head, tail;
public LRUCache(int capacity) {
this.count = 0;
this.capacity = capacity;
head = new DLinkedList();
head.pre = null;
tail = new DLinkedList();
tail.next = null; head.next = tail;
tail.pre = head;
}
public int get(String key) {
DLinkedList node = cache.get(key);
if(node == null) return -1;
this.moveToHead(node);
return node.value;
}
public void set(String key,int value) {
DLinkedList node = cache.get(key);
if(node == null) {
DLinkedList newNode = new DLinkedList();
newNode.key = key;
newNode.value = value;
this.cache.put(key, newNode);
this.addNode(newNode);
++count; if(count>capacity) {
DLinkedList tail = this.popTail();
this.cache.remove(tail.key);
--count;
}
}
else {
node.value = value;
this.moveToHead(node);
}
}
private void addNode(DLinkedList node) {
node.pre = head;
node.next = head.next;
head.next.pre = node;
head.next = node;
}
private void removeNode(DLinkedList node) {
DLinkedList pre = node.pre;
DLinkedList next = node.next;
pre.next = next;
next.pre = pre;
}
private void moveToHead(DLinkedList node) {
this.removeNode(node);
this.addNode(node);
}
private DLinkedList popTail() {
DLinkedList res = tail.pre;
this.removeNode(res);
return res;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
DLinkedList node = head;
while(node != null){
sb.append(String.format("%s:%s ", node.key,node.value));
node = node.next;
}
return sb.toString();
}
public static void main(String[] args) {
LRUCache lru = new LRUCache(3);
lru.set("1", 7);
System.out.println(lru.toString());
lru.set("2", 0);
System.out.println(lru.toString());
lru.set("3", 1);
System.out.println(lru.toString());
lru.set("4", 2);
System.out.println(lru.toString());
lru.get("2");
System.out.println(lru.toString());
lru.set("5", 3);
System.out.println(lru.toString());
lru.get("2");
System.out.println(lru.toString());
lru.set("6", 4);
System.out.println(lru.toString());
/*
0ull:0 1:7 null:0
null:0 2:0 1:7 null:0
null:0 3:1 2:0 1:7 null:0
null:0 4:2 3:1 2:0 null:0
null:0 2:0 4:2 3:1 null:0
null:0 5:3 2:0 4:2 null:0
null:0 2:0 5:3 4:2 null:0
null:0 6:4 2:0 5:3 null:0
*/
}
}
那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。
整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。
LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 head 代表双向链表的表头,tail 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。
下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:
save("key1", 7)
save("key2", 0)
save("key3", 1)
save("key4", 2)
get("key2")
save("key5", 3)
get("key2")
save("key6", 4)
相应的 LRU 双向链表部分变化如下:
s = save, g = get
总结一下核心操作的步骤:
- save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。
- get(key),通过 HashMap 找到 LRU 链表节点,因为根据LRU 原理,这个节点是最新访问的,所以要把节点插入到队头,然后返回缓存的值。
【https://zhuanlan.zhihu.com/p/34133067】