比较无聊的题,求斐波那契数的第N^M项。 f(0) = 0, f(1) = 1, f(n) = f(n - 1) + f(n - 2),结果对10000103取模。 N, M在[0..10^7]之间。要求复杂度:时间O(log(N * M)),空间O(1)。
分析: fib数取模有周期,并且对质数的周期一定是从最开头开始。也就在对P取模下,一定有f(T) == f(0)。关于周期的求法有原根之类的方法……但是本题直接暴力就行。算得
T = 20000208。后面就是矩阵乘方了。
代码:
// you can also use includes, for example:
// #include <algorithm> #include <vector>
const int MOD = 10000103;
const int T = 20000208; int mul(long long x,long long y,int M) {
return x * y % M;
} int add(int x,int y,int M) {
return ((x += y) < M)?x:(x - M);
} void mulmatrix(int a[2][2],int b[2][2],int c[2][2]) {
int i,j,k;
for (i = 0; i < 2; ++i) {
for (j = 0; j < 2; ++j) {
c[i][j] = 0;
for (k = 0; k < 2; ++k) {
c[i][j] = add(c[i][j], mul(a[i][k], b[k][j], MOD), MOD);
}
}
}
} void make(int a[2][2],int b[2][2]) {
int i,j;
for (i = 0; i < 2; ++i) {
for (j = 0; j < 2; ++j) {
a[i][j] = b[i][j];
}
}
} int solution(int N, int M) {
// write your code here...
/*int T;
vector<int> f;
f.push_back(0);
f.push_back(1);
for (T = 2; ; ++T) {
f.push_back(add(f[T - 1], f[T - 2], MOD));
if ((f[T] == 1) && (f[T - 1] == 0)) {
--T;
break;
}
}
return T;*/
int p = 1, x = N;
for (; M; M >>= 1) {
if (M & 1) {
p = mul(p,x,T);
}
x = mul(x,x,T);
}
if (p-- == 0) {
return 0;
}
int a[2][2],b[2][2],c[2][2];
a[0][0] = a[1][1] = b[0][1] = b[1][0] = b[1][1] = 1;
a[0][1] = a[1][0] = b[0][0] = 0;
for (; p; p >>= 1) {
if (p & 1) {
mulmatrix(a, b, c);
make(a, c);
}
mulmatrix(b, b, c);
make(b, c);
}
return a[1][1]; }