这道题,BF 时间复杂度O(n^2)
public static int subarraySum(int[] nums, int k) {
long [][] map = new long [nums.length+1][nums.length+1];
long[] odd = new long[nums.length+1];
long[] even = new long[nums.length+1];
int sum = 0;
for(int i=1;i<=nums.length;i++){
odd[i] = odd[i-1]+nums[i-1];
}
boolean flag = true;
for(int i=1;i<=nums.length;i++){
for(int j=i;j<=nums.length;j++){
int last = 0;
if(i==1) last = 0;
else last = nums[i-2];
if(flag){
even[j] = odd[j]-last;
if(even[j]==k) sum++;
}else{
odd[j] = even[j] -last;
if(odd[j]==k) sum++;
}
}
flag = !flag;
}
return sum;
}
如果开多个数组会SLE
可以用hashMap 时间复杂度O(n);
public static int subarraySum(int[] nums, int k) {
int sum = 0, result = 0;
Map<Integer, Integer> preSum = new HashMap<>();
preSum.put(0, 1);
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
if (preSum.containsKey(sum - k)) {
result += preSum.get(sum - k);
}
preSum.put(sum, preSum.getOrDefault(sum, 0) + 1);
}
return result;
}
思路关键在于hashmap中存放的是0-i 的sum
若sum - target 存在即为存在0-n sum[n] = sum-target;