The Shortest Path in Nya Graph
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 37 Accepted Submission(s): 6
Problem Description
This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on.
The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.
You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.
Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.
Help us calculate the shortest path from node 1 to node N.
The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.
You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.
Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.
Help us calculate the shortest path from node 1 to node N.
Input
The first line has a number T (T <= 20) , indicating the number of test cases.
For each test case, first line has three numbers N, M (0 <= N, M <= 105) and C(1 <= C <= 103), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.
The second line has N numbers li (1 <= li <= N), which is the layer of ith node belong to.
Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 104), which means there is an extra edge, connecting a pair of node u and v, with cost w.
For each test case, first line has three numbers N, M (0 <= N, M <= 105) and C(1 <= C <= 103), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.
The second line has N numbers li (1 <= li <= N), which is the layer of ith node belong to.
Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 104), which means there is an extra edge, connecting a pair of node u and v, with cost w.
Output
For test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N.
If there are no solutions, output -1.
If there are no solutions, output -1.
Sample Input
2
3 3 3
1 3 2
1 2 1
2 3 1
1 3 3
3 3 3
1 3 2
1 2 1
2 3 1
1 3 3
3 3 3
1 3 2
1 2 2
2 3 2
1 3 4
Sample Output
Case #1: 2
Case #2: 3
Case #2: 3
Source
Recommend
zhuyuanchen520
最短路。
主要是建图。
N个点,然后有N层,要假如2*N个点。
总共是3*N个点。
点1~N就是对应的实际的点1~N. 要求的就是1到N的最短路。
然后点N+1 ~ 3*N 是N层拆出出来的点。
第i层,入边到N+2*i-1, 出边从N+2*i 出来。(1<= i <= N)
N + 2*i 到 N + 2*(i+1)-1 加边长度为C. 表示从第i层到第j层。
N + 2*(i+1) 到 N + 2*i - 1 加边长度为C,表示第i+1层到第j层。
如果点i属于第u层,那么加边 i -> N + 2*u -1 N + 2*u ->i 长度都为0
然后用优先队列优化的Dijkstra就可以搞出最短路了
/* ***********************************************
Author :kuangbin
Created Time :2013-9-11 12:30:12
File Name :2013-9-11\1010.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std; /*
* 使用优先队列优化Dijkstra算法
* 复杂度O(ElogE)
* 注意对vector<Edge>E[MAXN]进行初始化后加边
*/
const int INF=0x3f3f3f3f;
const int MAXN=;
struct qnode
{
int v;
int c;
qnode(int _v=,int _c=):v(_v),c(_c){}
bool operator <(const qnode &r)const
{
return c>r.c;
}
};
struct Edge
{
int v,cost;
Edge(int _v=,int _cost=):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
bool vis[MAXN];
int dist[MAXN];
void Dijkstra(int n,int start)//点的编号从1开始
{
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=INF;
priority_queue<qnode>que;
while(!que.empty())que.pop();
dist[start]=;
que.push(qnode(start,));
qnode tmp;
while(!que.empty())
{
tmp=que.top();
que.pop();
int u=tmp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=;i<E[u].size();i++)
{
int v=E[tmp.v][i].v;
int cost=E[u][i].cost;
if(!vis[v]&&dist[v]>dist[u]+cost)
{
dist[v]=dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
}
void addedge(int u,int v,int w)
{
E[u].push_back(Edge(v,w));
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int N,M,C;
scanf("%d",&T);
int iCase = ;
while(T--)
{
scanf("%d%d%d",&N,&M,&C);
for(int i = ;i <= *N;i++) E[i].clear();
int u,v,w;
for(int i = ;i <= N;i++)
{
scanf("%d",&u);
addedge(i,N + *u - ,);
addedge(N + *u ,i,); }
for(int i = ;i < N;i++)
{
addedge(N + *i-,N + *(i+),C);
addedge(N + *(i+)-,N + *i,C);
}
while(M--)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
Dijkstra(*N,);
iCase++;
if(dist[N] == INF)dist[N] = -;
printf("Case #%d: %d\n",iCase,dist[N]); }
return ;
}