题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4725
Problem Description
This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on.
The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.
You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.
Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.
Help us calculate the shortest path from node 1 to node N.
The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.
You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.
Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.
Help us calculate the shortest path from node 1 to node N.
Input
The first line has a number T (T <= 20) , indicating the number of test cases.
For each test case, first line has three numbers N, M (0 <= N, M <= 10 5) and C(1 <= C <= 10 3), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.
The second line has N numbers l i (1 <= l i <= N), which is the layer of i th node belong to.
Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 10 4), which means there is an extra edge, connecting a pair of node u and v, with cost w.
For each test case, first line has three numbers N, M (0 <= N, M <= 10 5) and C(1 <= C <= 10 3), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.
The second line has N numbers l i (1 <= l i <= N), which is the layer of i th node belong to.
Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 10 4), which means there is an extra edge, connecting a pair of node u and v, with cost w.
Output
For test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N.
If there are no solutions, output -1.
If there are no solutions, output -1.
Sample Input
2 3 3 3 1 3 2 1 2 1 2 3 1 1 3 3 3 3 3 1 3 2 1 2 2 2 3 2 1 3 4
Sample Output
Case #1: 2 Case #2: 3
Source
题意:
n个点,m条边,以及相邻层之间移动的代价c,给出每个点所在的层数,以及m条边,每条边有u,v,c,表示从节点u到v(无向),并且移动的代价 c ,问说从 1 到 n 的代价最小是多少。
PS:
将层抽象出来成为n个点(对应编号依次为n+1 ~ n+n),然后层与层建边,点与点建边,层与在该层上的点建边 (边长为0),点与相邻层建边 (边长为c)。
代码如下:
#include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> #include <climits> #include <ctype.h> #include <queue> #include <stack> #include <vector> #include <deque> #include <set> #include <map> #include <iostream> #include <algorithm> using namespace std; #define pi acos(-1.0) #define INF 0x3f3f3f3f #define N 200017 int n, m, k, c; int Edgehead[N], dis[N]; int vv[N], lay[N]; struct { int v,w,next; } Edge[20*N]; bool vis[N]; int cont[N]; void init() { memset(Edgehead,0,sizeof(Edgehead)); memset(vv,0,sizeof(vv)); } void Addedge(int u,int v,int w) { Edge[k].next = Edgehead[u]; Edge[k].w = w; Edge[k].v = v; Edgehead[u] = k++; } int SPFA( int start) { queue<int>Q; while(!Q.empty()) Q.pop(); for(int i = 1 ; i <= N ; i++ ) dis[i] = INF; dis[start] = 0; //++cont[start]; memset(vis,false,sizeof(vis)); vis[start] = 1; Q.push(start); while(!Q.empty())//直到队列为空 { int u = Q.front(); Q.pop(); vis[u] = false; for(int i = Edgehead[u] ; i!=-1 ; i = Edge[i].next)//注意 { int v = Edge[i].v; int w = Edge[i].w; if(dis[v] > dis[u] + w) { dis[v] = dis[u]+w; if( !vis[v] )//防止出现环,也就是进队列重复了 { Q.push(v); vis[v] = true; } //if(++cont[v] > n)//有负环 // return -1; } } } return dis[n]; } int main() { int u, v, w; int t; int cas = 0; scanf("%d",&t); while(t--) { init(); scanf("%d%d%d",&n,&m,&c); k = 1; memset(Edgehead,-1,sizeof(Edgehead)); for(int i = 1; i <= n; i++) { scanf("%d",&u);//i 在第u层 lay[i] = u; vv[u] = 1; } for(int i = 1; i < n; i++) { if(vv[i] && vv[i+1]) //两层都出现过点相邻层才建边 { Addedge(n+i,n+i+1,c); Addedge(n+i+1,n+i,c); } } for(int i = 1; i <= n; i++) //层到点建边 点到相邻层建边 { Addedge(n+lay[i],i,0); if(lay[i] > 1) Addedge(i,n+lay[i]-1,c); if(lay[i] < n) Addedge(i,n+lay[i]+1,c); } for(int i = 1 ; i <= m ; i++ ) { scanf("%d%d%d",&u,&v,&w); Addedge(u,v,w);//双向链表 Addedge(v,u,w);//双向链表 } int s = SPFA(1);//从点1开始寻找最短路 if(s == INF) { s = -1; } printf("Case #%d: %d\n",++cas,s); } return 0; }