人生最伟大的目标是行动 ——《洛克菲勒的忠告》
第二课伊始,冒号开门见山:“首先介绍的是最基本的两种编程范式:命令式和声明式,其中命令式又称过程式。通俗点说,命令式编程由命令序列组成,即一系列祈使句:‘先做这,再做那’,强调‘怎么做’;声明式编程由相关表达式组成,即一系列陈述句:‘已知这,求解那’,强调‘做什么’。学术点说,命令式编程是电脑(von Neumann机)运行机制的抽象,即有序地从内存中获取指令和数据然后去执行;声明式编程是人脑思维方式的抽象,即利用数理逻辑或既定规范(specification)对已知条件进行推理运算。”
引号嘟囔着:“大多数语言好像都是命令式的。”
冒号接口道:“语言的演化是渐进的,大多数语言追根溯源是汇编语言的升级,而作为与机器语言一一对应的汇编语言自然是命令式的,因而这种范式最为传统和普及。声明式语言则发轫于人工智能的研究,主要包括函数式语言和逻辑式语言。其实它们的出现并不比命令式的晚多少——最早的函数式语言Lisp(LISt Processor)已有半个世纪的历史,最早之一的逻辑式语言Prolog(PROgramming in LOGic)也与C同龄。只是由于大多数更多地用于学术研究而非商业应用,颇有些‘养在深闺人未识’。起源的不同决定了这两大类范式代表着迥然不同的编程理念和风格:命令式编程是行动导向(Action-Oriented)的,因而算法是显性而目标是隐性的;声明式编程是目标驱动(Goal-Driven)的,因而目标是显性而算法是隐性的。为便于说明,下面分别用三种代表性的语言来实现阶乘(factorial)运算。”
冒号在黑板上打出投影——
C(命令式):
int factorial(int n)
{
int f = 1;
for (; n > 0; --n) f *= n;
return f;
}
Lisp(函数式):
(defun factorial(n)
(if (= n 0) 1 // 若n等于0,则n!等于 1
(* n (factorial(- n 1))))) // 否则n!等于n* (n-1)
Prolog(逻辑式):
// 0! 等于1
factorial(0,1).
// 若M等于N-1且 M!等于Fm且F等于N*Fm,则N! 等于F
factorial(N,F) :- M is N-1, factorial(M,Fm), F is N * Fm.
冒号提问:“撇开语法细节,大家说说以上三段代码区别在哪里?”
句号沉思片刻,答道:“C明确给出了阶乘的迭代算法,而Lisp仅描述了阶乘的递归定义,Prolog则陈述了两个关于阶乘的断言。”
冒号很满意:“一语中的!第二个问题:你们更习惯哪一种思维方式?”
逗号不加思索:“当然是第一种!”
冒号微笑着说:“这证明你至少是受过一定训练的程序员。大家回想一下,当你们初学编程时,是否习惯这种思维方式?”
叹号沉吟道:“好像不太习惯i = i + 1之类的语句。”
“对!”冒号的一嗓子吓了众人一跳,“我们最早接触的变量是代数方程中的x、y、z等,本质上是抽象化的符号,变量值是该符号在给定约束条件下的允许值。而命令式编程中的变量本质上是抽象化的内存,变量值是该内存的储存内容。通俗地说,前者好比姓名,所指之人是固定的;后者好比住址,所住之人是变化的。此外,等号在代数中是一种约束,而在许多命令式语言中则表示赋值。因此i = i + 1可以在命令式编程中出现,但绝不可能在数学推理中出现——除非在反证法中。”
叹号又道:“现在回头再看代数,反倒有些不习惯了。”
“这就是思维的定势效应。”冒号感慨道,“声明式编程让我们重回数学思维,其中函数式编程类似代数中的表达式变换和计算,逻辑式编程则类似数理逻辑推理。其中的变量也如数学中的一样,是抽象符号而非内存地址,因此没有赋值运算,不会产生变量被改写的副作用,也不存在内存分配和释放的问题。这既简化了代码,也减少了调试——不妨想一想,有多少bug是由于某个变量被意外改写或内存管理不慎而造成的?”
问号问道:“声明式语言与命令式语言看来是两个世界的产物,它们有何相通之处?”
冒号答道:“首先,所有高级语言都建立于低级语言之上,最终转化为机器语言,声明式语言也不例外。其次,声明式语言与命令式语言并非泾渭分明,而是互相交叉渗透的。一些‘非纯粹’ 的声明式语言也提供变量赋值和流程控制,而一些命令式语言也在逐渐发展,通过调用其他软件或增加新的语言特征来实现声明式编程。总的说来,在命令式语言中融入声明式的元素应当是一种趋势,尤其是函数式,它的一些特征已经在许多命令式语言中得到了支持。比较而言,声明式编程重目标、轻过程,专注问题的分析和表达而不致陷入算法的迷宫,其代码也更加简洁清晰、易于修改和维护。”
逗号仍然有些疑惑:“既然声明式编程有这么多好处,为什么命令式语言不仅占大多数,而且流行程度也不减呢?”
冒号回答:“编程语言的流行程度与其擅长的领域关系密切。声明式语言擅长基于数理逻辑的应用,如人工智能、符号处理、数据库、编译器等,对基于业务逻辑的、尤其是交互式或事件驱动型的应用就不那么得心应手了。而大多数软件是面向用户的,交互性强、多为事件驱动、业务逻辑千差万别,显然命令式语言在此更有用武之地。”
大家频频颔首。
问号突然想到了什么,指着投影问:“这里用Lisp实现阶乘的方法不也可以用在C上吗?”
冒号点点头,写下一段代码——
int factorial(int n)
{
return n == 0 ? 1 : n * factorial(n - 1);
}
“这是C的递归实现。”冒号娓娓道来,“除了细微的语法差别外,二者的确很相似,这说明用命令式语言也可以讲出声明式的味道。实际上,命令式语言提倡迭代而不鼓励递归,早期的Fortran 甚至都不支持递归。一则迭代比递归更符合命令式的思维模式,因为前者贴近机器语言而后者贴近数学语言;二则除尾递归(tail recursion)外,一般递归比迭代的开销(overhead)大。相反,声明式语言提倡递归而不支持迭代。就语法而言,它不允许迭代中的循环变量;就视角而言,迭代着眼微观过程而递归着眼宏观规律。”
叹号轻叹:“原来貌似普通的迭代和递归有那么多道道!”
“任何语言都难脱命令式或声明式的窠臼,因此上述三种范式最为基本。”冒号归纳道,“归根结底,编程是寻求一种机制,将指定的输入转化为指定的输出。三种范式对此提供了迥然不同的解决方案:命令式把程序看作一个自动机,输入是初始状态,输出是最终状态,编程就是设计一系列指令,通过自动机执行以完成状态转变;函数式把程序看作一个数学函数,输入是自变量,输出是因变量,编程就是设计一系列函数,通过表达式变换以完成计算;逻辑式把程序看作一个逻辑证明,输入是题设,输出是结论,编程就是设计一系列命题,通过逻辑推理以完成证明。绘成表格如下——”
范式 |
程序 |
输入 |
输出 |
程序设计 |
程序运行 |
命令式 |
自动机 |
初始状态 |
最终状态 |
设计指令 |
命令执行 |
函数式 |
数学函数 |
自变量 |
因变量 |
设计函数 |
表达式变换 |
逻辑式 |
逻辑证明 |
题设 |
结论 |
设计命题 |
逻辑推理 |
冒号见众人微显难色,宽慰道:“这部分理论性稍微强了些,对函数式和逻辑式也仅作了描述性说明,并未深入。不解之处,大可不必介怀,撒下的种子总有一天会萌动。先休息片刻,不要走开,广告之后更精彩。”