计算机OS的运行,最终要落实到访问物理内存,毕竟所有的数据都是来自于物理内存,而访问物理内存就需要先知道物理内存的地址,这个地址是实实在在的地址。然而我们的程序中使用的地址却并不一定要和这个最终的物理地址相等,那么如何将程序中使用的地址对应到实实在在的物理地址,这是一门技术,不知其所以然的人只能将其当成一种魔法!
物理内存地址生成方式:
虚拟地址概念:所谓虚拟地址,那是处理器为应用程序提供的一个概念,对于Intel处理器来讲,它要么是分段虚拟地址,要么是分页虚拟地址。对于什么是分段和分页,我相信能看到这篇文章的家伙一定都很并且可能比我更了解。分段模式的物理地址形成:定位段寄存器-〉找到段选择子-〉找到段-〉定位段的base地址-〉base地址加上指令值即offset-〉得到物理地址。
分页模式的物理地址形成:定位cr3寄存器指示的内存-〉读取其值-〉虚拟地址拆分为几个段-〉查找页表-〉得到物理地址。
我们看到,分段模式和分页模式得到物理地址的方式截然不同,它们到底有什么区别和联系呢?本质上,Intel处理器32位保护模式的宗旨在于一个概念,那就是特权环,一个程序仅仅可以在被允许的特权环内运行,而特权环的实现就是分段。
保护模式的分段机制包括两个方面:
1.特权环的概念:旨在分离系统和应用程序2.GDT/LDT:隔离各个任务
除却分段机制,32位保护模式还有一个概念,那就是分页:
分页:提供了对虚拟内存的支持,可以使进程可用的地址空间突破物理内存的限制,整个磁盘空间被认为是虚拟的内存(如果不使用file map,那么只是整个swap空间)。在不启用分页的情况下,所有的进程共享整个内存,你必须在GDT中为每一个进程预留一个位置,还要事先预知每个进程大致需要多大的内存...而是用虚拟内存,则整个4G的地址空间为一个进程独占。
Intel 32位保护模式分为两个层次,一个是分段,一个是分页
分页是位于分段之上更强的针对应用程序的保护,然而并不能完全抛弃分段。分段:针对整部机器的特权保护,分为了几个特权环
分页:针对进程的内存隔离保护,一个进程使用一个页表
二者结合使用才是真正的带有虚拟内存的32位保护模式
关于TSS:任务切换
进程的概念:进程就是一个执行绪,其指令是必须保存于内存当中的,如果OS是无虚拟内存支持的,那么GDT/LDT的重要性就会很大,必须为每一个进程单独开辟一块内存,使用LDT来将此块内存与其他进程的内存隔离开来,如果使能了虚拟内存,那么就由CR3寄存器指示的页目录来完成内存隔离。在没有虚拟内存的情况下,所谓的进程就是一个任务,其切换方式就是Intel定义的任务切换,也就是一个long jmp,jmp到哪里呢?当然是jmp到目标进程的LDT所指示的内存区域了。任务切换:Intel并没有将任务和进程等同起来。所谓的任务切换,Intel定义为就是一个long jmp,所谓的long jmp就是一个切换段寄存器的jmp,因此Intel定义的任务着重在于和GDT的关系而非和进程的关系。Intel的任务切换是一个广义的概念,涉及特权级的切换也是任务切换的一种,因为一般而言,OS核心和应用程序不在一个特权环,当然也不在一个段中,因此在切换时肯定涉及到了段寄存器的重载,当然TR寄存器指示的TSS也被看作是一般的段,CPU能区分目标段是一般的GDT/LDT段还是TSS,如果是TSS,那么就相当于切换了一个“进程”。对于进程切换,更重要的是页表的切换,也就是CR3寄存器的重载,因此对于进程切换,TSS切换的意义并不是很大,只要能保证寄存器上下文以及进程栈的正确save/restore即可,而这些东西完全可以都保存在栈上,因此只需要能保证栈的切换即可
32位OS的实现:
不带有虚拟内存保护:完全的以分段为依托的实现,仅仅实现OS和应用程序的隔离,并且整个应用程序的内存空间受制于安装的物理内存大小。也只能这样,否则多出去的内存数据放在哪里呢?带有虚拟内存保护:以分段为依托(如果愿意的话,你可以最小化使用分段),仅仅将分段用于OS核心与应用程序之间的隔离,因此只需要两个代码段和两个数据段即可,对于所有进程,共享一个段,因为进程之间可以使用分页机制来互相隔离。使用分段来把这个系统分为系统空间和用户空间,然后再用分页机制将用户空间划分为不同的进程空间...后面的我就不说了吧