Spark延长SparkContext初始化时间

时间:2022-01-14 23:55:26

有些应用中可能希望先在driver上运行一段java单机程序,然后再初始化SparkContext用集群模式操作java程序返回值。从而避免过早建立SparkContext对象分配集群资源,使资源长时间空闲。

这里涉及到两个yarn参数:

  <property>
<name>yarn.am.liveness-monitor.expiry-interval-ms</name>
<value>6000000</value>
</property>
<property>
<name>yarn.resourcemanager.am.max-retries</name>
<value>10</value>
</property>

Yarn会周期性遍历所有的ApplicationMaster,如果一个ApplicationMaster在一定时间(可通过参数yarn.am.liveness-monitor.expiry-interval-ms配置,默认为10min)内未汇报心跳信息,则认为它死掉了,它上面所有正在运行的Container将被置为运行失败(RM不会重新执行这些Container,它只会通过心跳机制告诉对应的AM,由AM决定是否重新执行,如果需要,则AM重新向RM申请资源),AM本身会被重新分配到另外一个节点上(管理员可通过参数yarn.resourcemanager.am.max-retries指定每个ApplicationMaster的尝试次数,默认是1次)执行。

还需要两个spark参数:

<property>
<name>spark.yarn.am.waitTime</name>
<value>6000000</value>
</property>
<property>
<name>spark.yarn.applicationMaster.waitTries</name>
<value>200</value>
</property>

集群管理

Spark On YARN

属性名称 默认值 含义
spark.yarn.scheduler.heartbeat.interval-ms 5000 Spark AppMaster发送心跳信息给YARN RM的时间间隔
spark.yarn.am.waitTime 100000 启动时等待时间
spark.yarn.applicationMaster.waitTries RM等待Spark AppMaster启动重试次数,也就是SparkContext初始化次数。超过这个数值,启动失败

下面是一个测试用例,现在driver打印30分钟的信息,然后再初始化SparkContext

import iie.udps.common.hcatalog.SerHCatInputFormat;
import iie.udps.common.hcatalog.SerHCatOutputFormat;
import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hive.hcatalog.data.DefaultHCatRecord;
import org.apache.hive.hcatalog.data.HCatRecord;
import org.apache.hive.hcatalog.data.schema.HCatSchema;
import org.apache.hive.hcatalog.mapreduce.OutputJobInfo;
import org.apache.spark.SerializableWritable;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.Function2;
import scala.Tuple2; /**
* 实现功能:首先在driver上单机打印30分钟数据,然后初始化SparkContext开启集群模式,用spark+hcatlog 读hive表数据,实现GroupByAge功能,
* 输出结果到hive表中,同时打印xml信息到hdfs文件。
* spark-submit --class iie.udps.example.spark.SparkTest --master yarn-cluster
* --num-executors 2 --executor-memory 1g --executor-cores 1 --driver-memory 1g
* --conf spark.yarn.applicationMaster.waitTries=200,--conf spark.yarn.am.waitTime=1800000 --jars /home/xdf/udps-sdk-0.3.jar,/home/xdf/udps-sdk-0.3.jar
* /home/xdf/sparktest.jar -c /user/hdfs/TestStdin2.xml
*/
public class SparkTest { @SuppressWarnings("rawtypes")
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: <-c> <stdin.xml>");
System.exit(1);
} String stdinXml = args[1];
OperatorParamXml operXML = new OperatorParamXml();
List<java.util.Map> stdinList = operXML.parseStdinXml(stdinXml);// 参数列表 // 获得输入参数
String inputDBName = stdinList.get(0).get("inputDBName").toString();
String inputTabName = stdinList.get(0).get("inputTabName").toString();
String outputDBName = stdinList.get(0).get("outputDBName").toString();
String outputTabName = stdinList.get(0).get("outputTabName").toString();
String tempHdfsBasePath = stdinList.get(0).get("tempHdfsBasePath")
.toString();
String jobinstanceid = stdinList.get(0).get("jobinstanceid").toString(); System.out.println(inputDBName+": "+ inputTabName +": "+outputDBName+": "+ outputTabName
+": "+ tempHdfsBasePath+": "+ jobinstanceid); long begin = System.currentTimeMillis();
int count = 600;// 写文件行数
for (int i = 0; i < count; i++) {
System.out.println("aaaaaaaaaaaaaaa"+i);
Thread.sleep(3000);
}
long end = System.currentTimeMillis();
System.out.println("FileOutputStream执行耗时:" + (end - begin) + "ms"); if (inputDBName == "" || inputTabName == "" || jobinstanceid == ""
|| outputDBName == "" || outputTabName == ""
|| tempHdfsBasePath == "" || jobinstanceid == "") { // 设置异常输出参数
java.util.Map<String, String> stderrMap = new HashMap<String, String>();
String errorMessage = "Some operating parameters is empty!!!";
String errotCode = "80001";
stderrMap.put("errorMessage", errorMessage);
stderrMap.put("errotCode", errotCode);
stderrMap.put("jobinstanceid", jobinstanceid);
String fileName = "";
if (tempHdfsBasePath.endsWith("/")) {
fileName = tempHdfsBasePath + "stderr.xml";
} else {
fileName = tempHdfsBasePath + "/stderr.xml";
} // 生成异常输出文件
operXML.genStderrXml(fileName, stderrMap);
} else {
// 根据输入表结构,创建与输入表同样结构的输出表
HCatSchema schema = operXML
.getHCatSchema(inputDBName, inputTabName); // Spark程序第一件事情就是创建一个JavaSparkContext告诉Spark怎么连接集群
SparkConf sparkConf = new SparkConf().setAppName("SparkExample"); JavaSparkContext jsc = new JavaSparkContext(sparkConf); // 读取并处理hive表中的数据,生成RDD数据并处理后返回
JavaRDD<SerializableWritable<HCatRecord>> LastRDD = getProcessedData(
jsc, inputDBName, inputTabName, schema); // 将处理后的数据存到hive输出表中
storeToTable(LastRDD, outputDBName, outputTabName); jsc.stop(); // 设置正常输出参数
java.util.Map<String, String> stdoutMap = new HashMap<String, String>();
stdoutMap.put("outputDBName", outputDBName);
stdoutMap.put("outputTabName", outputTabName);
stdoutMap.put("jobinstanceid", jobinstanceid);
String fileName = "";
if (tempHdfsBasePath.endsWith("/")) {
fileName = tempHdfsBasePath + "stdout.xml";
} else {
fileName = tempHdfsBasePath + "/stdout.xml";
} // 生成正常输出文件
operXML.genStdoutXml(fileName, stdoutMap);
}
System.out.println(inputDBName+": "+ inputTabName +": "+outputDBName+": "+ outputTabName
+": "+ tempHdfsBasePath+": "+ jobinstanceid);
System.exit(0);
} /**
*
* @param jsc
* @param dbName
* @param inputTable
* @param fieldPosition
* @return
* @throws IOException
*/
@SuppressWarnings("rawtypes")
public static JavaRDD<SerializableWritable<HCatRecord>> getProcessedData(
JavaSparkContext jsc, String dbName, String inputTable,
final HCatSchema schema) throws IOException {
// 获取hive表数据
Configuration inputConf = new Configuration();
Job job = Job.getInstance(inputConf);
SerHCatInputFormat.setInput(job.getConfiguration(), dbName, inputTable);
JavaPairRDD<WritableComparable, SerializableWritable> rdd = jsc
.newAPIHadoopRDD(job.getConfiguration(),
SerHCatInputFormat.class, WritableComparable.class,
SerializableWritable.class); // 获取表记录集
JavaPairRDD<Integer, Integer> pairs = rdd
.mapToPair(new PairFunction<Tuple2<WritableComparable, SerializableWritable>, Integer, Integer>() {
private static final long serialVersionUID = 1L; @SuppressWarnings("unchecked")
@Override
public Tuple2<Integer, Integer> call(
Tuple2<WritableComparable, SerializableWritable> value)
throws Exception {
HCatRecord record = (HCatRecord) value._2.value();
return new Tuple2((Integer) record.get(1), 1);
}
}); JavaPairRDD<Integer, Integer> counts = pairs
.reduceByKey(new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L; @Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
}); JavaRDD<SerializableWritable<HCatRecord>> messageRDD = counts
.map(new Function<Tuple2<Integer, Integer>, SerializableWritable<HCatRecord>>() {
private static final long serialVersionUID = 1L; @Override
public SerializableWritable<HCatRecord> call(
Tuple2<Integer, Integer> arg0) throws Exception {
HCatRecord record = new DefaultHCatRecord(2);
record.set(0, arg0._1);
record.set(1, arg0._2);
return new SerializableWritable<HCatRecord>(record);
}
});
// 返回处理后的数据
return messageRDD;
} /**
* 将处理后的数据存到输出表中
*
* @param rdd
* @param dbName
* @param tblName
*/
@SuppressWarnings("rawtypes")
public static void storeToTable(
JavaRDD<SerializableWritable<HCatRecord>> rdd, String dbName,
String tblName) {
Job outputJob = null;
try {
outputJob = Job.getInstance();
outputJob.setJobName("SparkExample");
outputJob.setOutputFormatClass(SerHCatOutputFormat.class);
outputJob.setOutputKeyClass(WritableComparable.class);
outputJob.setOutputValueClass(SerializableWritable.class);
SerHCatOutputFormat.setOutput(outputJob,
OutputJobInfo.create(dbName, tblName, null));
HCatSchema schema = SerHCatOutputFormat
.getTableSchemaWithPart(outputJob.getConfiguration());
SerHCatOutputFormat.setSchema(outputJob, schema);
} catch (IOException e) {
e.printStackTrace();
} // 将RDD存储到目标表中
rdd.mapToPair(
new PairFunction<SerializableWritable<HCatRecord>, WritableComparable, SerializableWritable<HCatRecord>>() {
private static final long serialVersionUID = -4658431554556766962L; public Tuple2<WritableComparable, SerializableWritable<HCatRecord>> call(
SerializableWritable<HCatRecord> record)
throws Exception {
return new Tuple2<WritableComparable, SerializableWritable<HCatRecord>>(
NullWritable.get(), record);
}
}).saveAsNewAPIHadoopDataset(outputJob.getConfiguration()); } }

输入表数据:

hive> select * from test_in;
OK
120
220
321
420
521
620
721
819
919
1021

输出表数据:

hive> select * from test_out;
OK
192
214
204