Redis数据类型使用场景及有序集合SortedSet底层实现详解

时间:2022-05-14 23:14:23

  Redis常用数据类型有字符串String、字典dict、列表List、集合Set、有序集合SortedSet,本文将简单介绍各数据类型及其使用场景,并重点剖析有序集合SortedSet的实现。

  List的底层实现是类似Linked List双端链表的结构,而不是数组,插入速度快,不需要节点的移动,但不支持随机访问,需要顺序遍历到索引所在节点。List有两个主要的使用场景:

  1. 记住用户最新发表的博文,每次用户发表了文章,将文章id使用LPUSH加入到列表中,用户访问自己的主页时,使用LRANGE 0 9获取最新10条博文(使用LTRIM 0 9可以取出最新10条文章的同时,删除旧的文章),而不用使用order by sql语句去后端数据库取数据。
  2. 生产者/消费者模式,生产者往List中加入数据,消费者从List中取数据。当List为空时,消费者rpop返回为NULL,这是会进行轮询,等待一段时间继续去取。轮询模式有如下缺点:
    1. 客户端和redis耗费cpu和网络带宽等资源执行无效命令。
    2. 取回NULL后,sleep会使有新数据时,客户端消费不够及时。

  为了解决轮询的问题,Redis提供了brpop和blpop实现Blocking读,当List为空时,等待一段时间再返回,当有数据时,按请求顺序返回给各客户端。(当List为空时,可以将请求Blocking读命令的客户端加入此List的Blocking读列表中,有数据时按列表序返回)

  集合Set的底层实现是类似Hash,不过value全为NULL,set有求并、交、差集及随机取的功能。使用场景如下:

  1. 表示对象之间的联系,比如求拥有标签1、2、10的新闻,使用sinter tag:1:news tag:2:news tag:10:news。
  2. 随机发牌,使用spop,spop随机返回集合中的元素,比如给每位玩家发五张牌,每位玩家调用五次spop即可,为了下次发牌不需要再将牌加入set,可以在这次发牌前调用sunionstore将牌复制。

  有序集合SortedSet(t_zset.c),集合中的每个值都带有分数,按分数排序,底层实现较为复杂,用到了ziplist、skiplist和dict数据结构,后文将进行详细介绍。使用场景如下:

  1. 排行榜问题,比如游戏排行榜,按用户分数排序,并取top N个用户。

  在redis中,所有数据类型都被封装在一个redisObject结构中,用于提供统一的接口,结构如下表1:

表1 redisObject

redisObject源码(server.h)
typedef struct redisObject {
unsigned type:;//对象类型,用于分辨字符串、列表、
//集合、有序集合、字典,有序集合为REDIS_ZSET
unsigned encoding:;//编码,标识底层数据结构,
//有序集合有REDIS_ENCODING_ZIPLIST(压缩列表)、REDIS_ENCODING_SKIPLIST(跳表)
//记录键最近一次被访问的时间,长时间不被访问的对象可被内存回收
unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
* LFU data (least significant 8 bits frequency
* and most significant 16 bits access time). */
int refcount;//引用计数,用于对象内存回收,
//当为0时回收内存,引用计数可实现不同键相同值的共享,
//事实上,redis会初始化创建0到9999个整数对象用于共享,从而节约内存
void *ptr;//指向底层数据结构实例的指针
} robj;
 

  有序列表有压缩列表ziplist和跳表skiplist两种实现方式,通过encoding识别,当数据项数目小于zset_max_ziplist_entries(默认为128),且保存的所有元素长度不超过zset_max_ziplist_value(默认为64)时,则用ziplist实现有序集合,否则使用zset结构,zset底层使用skiplist跳表和dict字典。创建有序集合的关键代码如下表2:

表2 创建有序集合

zaddGenericCommand函数
if (server.zset_max_ziplist_entries ==  ||
server.zset_max_ziplist_value < sdslen(c->argv[scoreidx+]->ptr))
{
zobj = createZsetObject(); //创建zset
} else {
zobj = createZsetZiplistObject();//创建ziplist
}

  ziplist是一个内存连续的特殊双向链表LinkList,减少了内存碎片和指针的占用,用于节省内存,但对ziplist进行操作会导致内存的重新分配,影响性能,故在元素较少时用ziplist。ziplist内存布局如下:

<zlbytes> <zltail> <zllen> <entry> <entry> ... <entry> <zlend>

表3 ziplist在内存中各字节含义

Field
含义
zlbytes(uint32_t)
ziplist占用的内存字节数,包括zlbytes本身
zltail(uint32_t)
最后一个entry的offset偏移值
zllen(uint16_t)
数据项entry的个数
entry(变长)
数据项
zlend(uint8_t)
标识ziplist的结束,值为255

  数据项entry的内存结构如下:<prevlen> <encoding> <entry-data>,当保存的是小整型数据时,entry没有entry-data域, encoding本身包含了整型元素值。Entry各字节含义如下表4:

表4 entry各Field含义

Field
含义
prevlen
上一个数据项entry的长度。当长度小于254字节,则prevlen占1字节,当长度大于或等于254字节,则prevlen占5字节,首字节值为254,剩下4字节表示上一entry长度。
encoding
encoding的值依赖于数据entry-data。首字节的前两个bit为00、01、10,标识entry-data为字符串,同时表示encoding的长度分别为1、2、5字节,除前两个bit,剩下的bit表示字符串长度;前两个bit为11,表示entry-data为整型,接下来的2 bit表示整数类型。entry-data不同类型及encoding如下:
1)       |00pppppp| - 1 byte,字符串且长度小于等于63字节(6bit)
2)       |01pppppp|qqqqqqqq| - 2 bytes,字符串且长度小于等于16383字节(14bit)
3)       |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes,字符串且长度大于等于16384(后面四个字节表示长度,首字节的低位6bit设为0)
4)       |11000000| - 1 bytes,len字段为1字节,后面的entry-data为整型且类型为int16_t (2 bytes)
5)       |11010000| - 1 bytes, entry-data为整型且类型为int32_t (4 bytes)
6)       |11100000| - 1 bytes, entry-data为整型且类型为int64_t (8 bytes)
7)       |11110000| - 1 bytes, entry-data为整型且占3 bytes
8)       |11111110| - 1 bytes, entry-data为整型且占1 bytes
9)       |1111xxxx| - (with xxxx between 0000 and 1101),xxxx的值从1到13,可用于表示entry-data(1到12),encoding包含entry-data的值,从而不需要entry-data域
10)    |11111111| - 用于标识ziplist的结束
entry-data
具体的数据

  ziplist在内存中的实例如图1,zibytes占4字节(小端存储),值为15,表示此ziplist占用内存15字节;zltail占4字节,值为12,表示最后一个数据项entry(这里是5所在的entry),距离ziplist的开头offset为12字节;entries占2字节,表示数据项数目为2; "00 f3"表示第一个entry(值为2),”00”表示前一个entry的长度为0(prevlen),”f3”对应encoding中的第9种情况(“11110011”),表示数据为整型且值为2;”02 f6”表示第二个entry,”02”表示前一个entry的长度为2(prevlen),”f6”也对应encoding的第9种情况(“11110110”),表示数据为整型且值为6.

Redis数据类型使用场景及有序集合SortedSet底层实现详解

图1 ziplist在内存中的实例

  ziplist在redis中插入数据的源码及注释如表5:

表5 ziplist插入数据源码

ziplist插入逻辑源码(ziplist.c)

/* Insert item at "p". */

unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {

    size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;

    unsigned int prevlensize, prevlen = ;

    size_t offset;

    int nextdiff = ;

    unsigned char encoding = ;

    long long value = ; /* initialized to avoid warning. Using a value

                                    that is easy to see if for some reason

                                    we use it uninitialized. */

    zlentry tail;

    /* Find out prevlen for the entry that is inserted. */

    //插入位置前面一个entry节点占用的字节数prevlen

    if (p[] != ZIP_END) {//插入节点不在末尾节点,直接从p的前面字节读

        ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);

    } else {//插入节点在末尾位置,找到末尾节点

        unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);

        if (ptail[] != ZIP_END) {

            prevlen = zipRawEntryLength(ptail);

        }

    }

    /* See if the entry can be encoded */

    if (zipTryEncoding(s,slen,&value,&encoding)) {//判断s是否可以转化为整数,并将整数值和enconding分别存在value和encoding指针

        /* 'encoding' is set to the appropriate integer encoding */

        reqlen = zipIntSize(encoding);//整数值长度

    } else {

        /* 'encoding' is untouched, however zipStoreEntryEncoding will use the

         * string length to figure out how to encode it. */

        reqlen = slen;//字符串长度

    }

    /* We need space for both the length of the previous entry and

     * the length of the payload. */

    //得出新插入节点占用的总字节数reqlen

    reqlen += zipStorePrevEntryLength(NULL,prevlen);

    reqlen += zipStoreEntryEncoding(NULL,encoding,slen);

    /* When the insert position is not equal to the tail, we need to

     * make sure that the next entry can hold this entry's length in

     * its prevlen field. */

    //插入新节点不在末尾位置,则插入位置p所指向的entry节点的prevlen,

    //值会变成新插入节点的总长度,且prevlen所占用的字节数可能会变化,

    //nextdiff表示新插入节点下一节点的prevlen需要空间的变化,负值表示变小,

    //正值表示扩大

    int forcelarge = ;

    nextdiff = (p[] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : ;

    if (nextdiff == - && reqlen < ) {

        nextdiff = ;

        forcelarge = ;

    }

    /* Store offset because a realloc may change the address of zl. */

    offset = p-zl;

    zl = ziplistResize(zl,curlen+reqlen+nextdiff);//重新分配空间,并将zl的每字节都填充到新分配的内存中

    p = zl+offset;

    //将p后面的数据项进行移动

    /* Apply memory move when necessary and update tail offset. */

    if (p[] != ZIP_END) {

        /* Subtract one because of the ZIP_END bytes */

        memmove(p+reqlen,p-nextdiff,curlen-offset-+nextdiff);

        /* Encode this entry's raw length in the next entry. */

        if (forcelarge)//设置下一个节点的prevlen

            zipStorePrevEntryLengthLarge(p+reqlen,reqlen);

        else

            zipStorePrevEntryLength(p+reqlen,reqlen);

        /* Update offset for tail */

        ZIPLIST_TAIL_OFFSET(zl) =

            intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);

        /* When the tail contains more than one entry, we need to take

         * "nextdiff" in account as well. Otherwise, a change in the

         * size of prevlen doesn't have an effect on the *tail* offset. */

        zipEntry(p+reqlen, &tail);

        if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {

            ZIPLIST_TAIL_OFFSET(zl) =

                intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);

        }

    } else {

        /* This element will be the new tail. */

        ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);

    }

    /* When nextdiff != 0, the raw length of the next entry has changed, so

     * we need to cascade the update throughout the ziplist */

    if (nextdiff != ) {

        offset = p-zl;

        zl = __ziplistCascadeUpdate(zl,p+reqlen);

        p = zl+offset;

    }

    /* Write the entry */

    //将新数据项放入插入位置

    p += zipStorePrevEntryLength(p,prevlen);

    p += zipStoreEntryEncoding(p,encoding,slen);

    if (ZIP_IS_STR(encoding)) {

        memcpy(p,s,slen);

    } else {

        zipSaveInteger(p,value,encoding);

    }

    ZIPLIST_INCR_LENGTH(zl,);

    return zl;

}

  zset在redis中的定义如表6:

表6 zset源码

zset定义(server.h)

typedef struct zset {

    dict *dict;//字典

    zskiplist *zsl;//跳表

} zset;

  zset同时使用dict和zskiplist实现有序集合的功能,dict是为了快速获得指定元素的分值(zscore命令,时间复杂度为O(1)),zskiplist是为了快速范围查询(zrank、zrange命令)。本文重点讲解跳表的知识。

  skiplist是在有序链表的基础上发展而来,在有序链表中进行查找,需要进行顺序遍历,时间复杂度为O(n),同样,进行插入也需要顺序遍历到插入位置,时间复杂度也为O(n)。

Redis数据类型使用场景及有序集合SortedSet底层实现详解

图2 有序链表

  利用有序的性质,每两个节点多加一个指针,指向下下个节点,如图3所示,新增加的指针可以构成一个新的有序链表,新链表节点个数只有下层链表的一半,当查找元素时,可以从新链表开始向右查找,碰到比查找元素大的节点,则回到下一层链表查找,比如查找元素20,查找路径如下图中标记为红的路径(head->8->17->23,23比20大,到下一层查找,17->20),由于新增的指针,查找元素时不需要和每个节点进行比较,需要比较的节点大概为原来的一半。

Redis数据类型使用场景及有序集合SortedSet底层实现详解

图3 双层有序链表

  可以在新产生的链表之上,每隔两个节点,再增加一个指针,从而产生第三层链表,如图4所示,红色箭头代表查找路径,从最上层链表开始查找,一次可以跳过四个节点,进一步加快了查找速度。

Redis数据类型使用场景及有序集合SortedSet底层实现详解

图4 多层有向链表

  skiplist借鉴了多层链表的思想,但多层链表这种严格的2:1关系,会导致插入和删除节点破坏上下层之间的2:1关系,导致插入位置和删除位置及后续的所有节点都需要进行调整。skiplist并不采用这种严格的2:1对应关系,每个节点的层数采用随机生成的方法,节点插入例子如下图5所示,插入节点不会影响其它节点的层数,且只需调整插入节点前后的指针,不需要对所有节点进行调整,降低了插入的复杂度。

Redis数据类型使用场景及有序集合SortedSet底层实现详解

图5 skiplist插入节点过程

  skiplist随机生成层数level的的代码如表7:

  表7 随机生成节点层数

zslRandomLevel函数(t_zset.c)

int zslRandomLevel(void) {

    //随机生成节点层数,当第i层节点存在时,第i+1节点存在的概率为ZSKIPLIST_P = 1/4

    //ZSKIPLIST_MAXLEVEL 64,表示节点的最大层数

    int level = ;

    while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))

        level += ;

    return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;

}

  skiplist时间复杂度为o(),所占用空间的大小依赖于插入元素随机生成的层数,每个元素level至少为1,层数越高,生成的概率越低,节点的层数服从一定的概率分布,如下:

  1. 节点恰好只有一层的概率为1-p
  2. 节点层数大于等于2的概率为p,恰好等于2的概率为p(1-p)
  3. 节点层数大于等于k的概率为pk-1,恰好等于k的概率为pk-1(1-p)

  每个节点的平均层数计算如下:

  Redis数据类型使用场景及有序集合SortedSet底层实现详解

  平均层数代表每个节点的平均指针数目,在redis中,p=1/4,因此平均指针数目为1.33。

  在redis中skiplist的定义代码如表8,zskiplist表示跳表, zskiplistNode表示跳表中的节点, zskiplistNode包含了分值,每个节点按分值排序,且节点包含后退指针,用于双向遍历。

表8 redis中跳表结构

zskiplist及zskiplistNode(server.h)

/* ZSETs use a specialized version of Skiplists */

typedef struct zskiplistNode {

    sds ele;//实际存储的数据

    double score;//分值

    struct zskiplistNode *backward;//后退指针,指向前一个节点

    struct zskiplistLevel {

        struct zskiplistNode *forward;//前进指针,指向下一个节点

        unsigned long span;//跨度,表示该层链表的这一节点到下一节点跨越的节点数,用于计算rank

    } level[];//层级数组,每个层级都有到下一个节点的指针和跨度

} zskiplistNode;//跳表节点

typedef struct zskiplist {

    struct zskiplistNode *header, *tail;//跳表头节点和尾节点

    unsigned long length;//跳表元素个数

    int level;//跳表的最高层数(不包括头节点,头节点实际上并不存储数据)

} zskiplist;

  redis中,zskiplist插入元素的代码如表9,在查找插入位置的过程中,记下每层需要更新的前一节点在update数组中。

表9 跳表插入节点源代码

zslInsert(t_zset.c)

zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {

    zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;

    unsigned int rank[ZSKIPLIST_MAXLEVEL];

    int i, level;

    serverAssert(!isnan(score));

    x = zsl->header;

    for (i = zsl->level-; i >= ; i--) {

        /* store rank that is crossed to reach the insert position */

        //rank[i]初始化为rank[i+1],所以rank[i]-rank[i+1]表示在i层走过的节点数

        rank[i] = i == (zsl->level-) ?  : rank[i+];

        while (x->level[i].forward &&

                (x->level[i].forward->score < score ||

                    (x->level[i].forward->score == score &&

                    sdscmp(x->level[i].forward->ele,ele) < )))

        {

            rank[i] += x->level[i].span;

            x = x->level[i].forward;

        }

        // 记录将要和新节点相连接的节点,x表示新节点在i层连接的上一节点

        update[i] = x;

    }

    /* we assume the element is not already inside, since we allow duplicated

     * scores, reinserting the same element should never happen since the

     * caller of zslInsert() should test in the hash table if the element is

     * already inside or not. */

    level = zslRandomLevel();//随机生成此节点的层数

    if (level > zsl->level) {

        for (i = zsl->level; i < level; i++) {

            rank[i] = ;

            update[i] = zsl->header;

            update[i]->level[i].span = zsl->length;

        }

        zsl->level = level;

    }

    x = zslCreateNode(level,score,ele);

    for (i = ; i < level; i++) {

        x->level[i].forward = update[i]->level[i].forward;

        update[i]->level[i].forward = x;

        /* update span covered by update[i] as x is inserted here */

        //rank[0]表示0层链表,插入节点x左边的节点数

        //rank[i]表示i层链表,插入节点x左边的节点数

        //rank[0] - rank[i]+1表示i层链表,x前一节点到x的跨度

        x->level[i].span = update[i]->level[i].span - (rank[] - rank[i]);

        update[i]->level[i].span = (rank[] - rank[i]) + ;

    }

    /* increment span for untouched levels */

    //在level及之上的每层,update[i]到下一节点的距离由于插入了x节点而加1

    for (i = level; i < zsl->level; i++) {

        update[i]->level[i].span++;

    }

    //更新后退指针

    x->backward = (update[] == zsl->header) ? NULL : update[];

    if (x->level[].forward)

        x->level[].forward->backward = x;

    else

        zsl->tail = x;

    zsl->length++;

    return x;

}

  与平衡树(AVL、红黑树)比,skiplist有如下优点,这也是redis使用跳表做有序集合底层结构而不选用平衡树的原因。

  1. 占用内存少。通过调节概率p,可以使每个节点的平均指针数发生变化,redis中为1.33,而二叉树每个节点都有两个指针。
  2. ZRANGE or ZREVRANGE等范围查询更简单。Skiplist可以看作特殊的双向链表,只需找到范围中的最小节点,顺序遍历即可,而平衡树找到范围中的最小节点,仍需中序遍历。
  3. 和红黑树等比,skiplist实现和调试简单。

参考文献

  1. An introduction to Redis data types and abstractions.
  2. Redis内部数据结构详解(4)——ziplist.
  3. Pugh W. Skip lists: a probabilistic alternative to balanced trees[J]. Communications of the ACM, 1990, 33(6): 668-677.
  4. Redis为什么用跳表而不用平衡树?
  5. Is there any particular reason you chose skip list instead of btrees except for simplicity?