Hadoop| MapReduce01 概述

时间:2021-10-22 21:41:57

概述

分布式运算程序;

优点:易于编程;良好扩展性;高容错性;适合PB级以上海量数据的离线处理;

缺点:不擅长实时计算;不擅长流式计算;不擅长DAG有向图计算;

核心思想:

1)分布式的运算程序往往需要分成至少2个阶段。

2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

一个完整的MapReduce在分布式运行时有3类实例进程:

MrAppMaster:负责整个程序的过程调度及状态协调;

MapTask:负责Map阶段的整个数据处理流程;

ReduceTask:负责ReduceTask阶段的整个数据处理流程;

数据序列化类型

常用的数据类型对应的Hadoop数据序列化类型
Java类型    Hadoop Writable类型
Boolean    BooleanWritable
Byte ByteWritable
Int IntWritable
Float FloatWritable
Long LongWritable
Double     DoubleWritable
String     Text
Map MapWritable
Array      ArrayWritable
Null   NullWritable

MapReduce编程规范:

用户编写的程序分成三个部分:Mapper、Reducer和Driver。

Mapper阶段:

自定义的Mapper继承父类;输入数据以K,V对的形式;业务逻辑写在map( )方法;

输出数据以K,V形式;map()方法(MapTask进程)对每一个k,v调用一次

Reduce阶段:

自定义的Reducer继承父类;输入数据类型对应Mapper的输出类型以K,V对的形式;业务逻辑写在reduce( )方法;

输出数据以K,V形式;(ReduceTask进程)对每一组相同k的k,v调用一次reduce方法

Driver 阶段:

Driver 相当于yarn集群的客户端,提交(封装了MapReduce程序相关运行参数的job对象)整个程序到yarn集群

Word Count案例 -- 创建Maven工程

在pom.xml文件中添加如下依赖

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.2</version>
</dependency>
</dependencies>

在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

编写Mapper类

package com.xxx.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException; public class WcMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
//定义泛型: 输入是以行号: 一行文本这种形式; 输出是以aaa: 1这种形式
private Text word = new Text(); //对象定义为类的私有,是为了防止垃圾,对象太多会占用很大的JVM堆空间;
private IntWritable one = new IntWritable(1); @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.切分行数据
String[] split = value.toString().split(" ");
for (String str : split) {
this.word.set(str);
//context贯彻整个页面的,
context.write(this.word, one);
} }
}

WcReduce类

package com.xxx.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.Iterator; public class WcReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
//泛型 输入aaa 1; 输出是对所有的进行统计汇总aaa 3;
private IntWritable sumAll = new IntWritable(); @Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
Iterator<IntWritable> iterator = values.iterator();
while (iterator.hasNext()){
sum += iterator.next().get();
}
this.sumAll.set(sum);
context.write(key, this.sumAll);
}
}

WcDriver

package com.atguigu.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class WcDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取一个任务实例; 获取配置信息和封装任务
Job job = Job.getInstance(new Configuration());
//2.设置jar类加载路径
job.setJarByClass(WcDriver.class);
//3.设置Mapper和Reduce类
job.setMapperClass(WcMapper.class);
job.setReducerClass(WcReduce.class);
//4.设置Mapper和Reduce最终输出的k v类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); //5.设置输入和输出路径
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); //6.提交任务
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}

Hadoop| MapReduce01 概述

打包jar,copy到Hadoop集群上传,然后在集群中运行

Hadoop| MapReduce01 概述

[kris@hadoop101 hadoop-2.7.2]$ rz -E    //上传jar包WordCount-1.0-SNAPSHOT.jar

[kris@hadoop101 hadoop-2.7.2]$ hadoop jar WordCount-1.0-SNAPSHOT.jar com.atguigu.mapreduce.wordcount.WcDriver /2.txt /output            //运行

Hadoop序列化

Hadoop| MapReduce01 概述

 注意:

反序列化时,需要反射调用空参构造函数,所以必须有空参构造

注意反序列化的顺序和序列化的顺序完全一致

要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。

如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口(WritableComparable< >),因为MapReduce框中的Shuffle过程要求对key必须能排序。

@Override

public int compareTo(FlowBean o) {

// 倒序排列,从大到小

return xxx ;

}

自定义bean对象实现序列化接口(Writable)

package flow;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; //1.实现Writable接口
public class FlowBean implements Writable {
private long upFlow;
private long downFlow;
private long sumFlow; public FlowBean() {
super();
} public void set(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = this.upFlow + this.downFlow;
} public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
} public long getDownFlow() {
return downFlow;
} public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
} public long getSumFlow() {
return sumFlow;
} public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
} @Override
public String toString() {
return "上行流量=" + upFlow +
",下行流量=" + downFlow +
",总流量=" + sumFlow;
}
//写序列化方法;
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}
//反序列化方法必须和序列化方法顺序一致;
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong(); }
}
    //写序列化方法;
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}
//反序列化方法必须和序列化方法顺序一致;
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong();
FlowMapper类
//1.泛型是输入:行号+一行的内容; 输出:key字符手机号+类对象
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
private Text phone = new Text();
FlowBean flowBean = new FlowBean(); @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] split = value.toString().split("\t");
phone.set(split[1]); //获取手机号key
flowBean.set(Long.parseLong(split[split.length-3]), Long.parseLong(split[split.length-2]));//获取upFlow和downFlow作为v
context.write(phone, flowBean);
}
} FlowReducer类 public class FlowReduce extends Reducer<Text, FlowBean, Text, FlowBean> {
private FlowBean flowBean = new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
super.reduce(key, values, context);
int sumUpFlow = 0;
int sumDownFlow = 0;
for (FlowBean value : values) {
sumUpFlow += value.getUpFlow();
sumDownFlow += value.getDownFlow();
}
flowBean.set(sumUpFlow, sumDownFlow);
context.write(key, flowBean);
}
} FlowDriver类 public class FlowDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取job实例;获取配置信息
Job job = Job.getInstance(new Configuration());
//2.设置类路径;指定被程序的jar包所在的路径
job.setJarByClass(FlowDriver.class);
//3.设置Mapper和Reducer 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReduce.class);
//4.设置输出类型 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
// 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//5.设置输入输出路径
FileInputFormat.setInputPaths(job, new Path("F:\\input"));
FileOutputFormat.setOutputPath(job, new Path("F:\\output"));
//6.提交
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}