【单调队列优化dp】HDU 3401 Trade

时间:2022-12-25 21:31:59

http://acm.hdu.edu.cn/showproblem.php?pid=3401

【题意】

  • 知道之后n天的股票买卖价格(api,bpi),以及每天股票买卖数量上限(asi,bsi),问他最多能赚多少钱。开始时有无限本金,要求任两次交易需要间隔W天以上,即第i天交易,第i+w+1天才能再交易。同时他任意时刻最多只能拥有maxp的股票

【思路】

  • dp[i][j]表示第i天拥有j支股票的最大收益,有三种转移方案:
  • dp[i][j]=max(dp[i][j],dp[i-1][j])表示第i天不买也不卖,由前一天转移而来
  • dp[i][j]=max(dp[i][j],dp[i-w-1][k]-(j-k)*ap[i])表示第i天买股票,有第i-w-1天转移而来
  • dp[i][j]=max(dp[i][j],dp[i-w-1][k]+(k-j)*bp[i])表示第i天卖股票,有第i-w-1天转移而来
  • 注意只需计算由i-w-1天转移而来,因为i-w-1天前的最优值已经通过不买不卖转移到了i-w-1天,即dp[i][j],j固定是随i单调递增的
  • 现在dp的复杂度是n^3,怎样降低复杂度?
  • 分析买股票的情况,dp[i][j]=max(dp[i-w-1][k]+k*ap[i])-j*ap[j],类似a[i]=max(b[k])+c[i],可以用单调队列优化
  • 我理解的是,状态数为2D,转移为1D,然后又有单调性,可以固定一维状态,把转移均摊到另一维,相当于转移是O(1)的,所以单调队列可以把dp降一维
  • a[i]=max(b[k]),若k<=j是从前往后递推,若k>=j是从后往前递推

【AC】

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e3+;
const int inf=0x3f3f3f3f;
int ap[maxn],bp[maxn],as[maxn],bs[maxn];
int n,maxp,w;
int dp[maxn][maxn];
struct node
{
int x;
int num;
}q[maxn];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(dp,-inf,sizeof(dp));//求最大值,所以初始化为无穷小
scanf("%d%d%d",&n,&maxp,&w);
for(int i=;i<=n;i++) scanf("%d%d%d%d",&ap[i],&bp[i],&as[i],&bs[i]);
for(int i=;i<=n;i++) dp[i][]=;//拥有股票为0的最大收益当前是0
//前w+1天和[w+2,n]要分开算
//前w+1天只有两种情况:1.每天都不买不卖 2.其中一天买了股票 不能卖股票,而且最多只有一天能交易
for(int i=;i<=w+;i++)
{
for(int j=;j<=as[i];j++)
{
dp[i][j]=-j*ap[i];//可以选择在当天买
}
}
for(int j=;j<=maxp;j++)
{
for(int i=;i<=w+;i++)
{
dp[i][j]=max(dp[i][j],dp[i-][j]);//也可以选择由前一天转移而来
}
}
for(int i=w+;i<=n;i++)
{
int head=,tail=;
for(int j=;j<=maxp;j++)
{
dp[i][j]=max(dp[i][j],dp[i-][j]);//不买也不卖
//dp[i][j]=max(dp[i-w-1][k]+k*ap[i])-j*ap[i],其中k<=j
while(head<=tail&&q[tail].x<=dp[i-w-][j]+j*ap[i]) tail--;
q[++tail].x=dp[i-w-][j]+j*ap[i];q[tail].num=j;
while(q[head].num+as[i]<j) head++;
dp[i][j]=max(dp[i][j],q[head].x-j*ap[i]);
}
//dp[i][j]=max(dp[i-w-1][k]+k*bp[i])-j*bp[i],其中k>=j
head=,tail=;
for(int j=maxp;j>=;j--)
{
while(head<=tail&&q[tail].x<=dp[i-w-][j]+j*bp[i]) tail--;
q[++tail].x=dp[i-w-][j]+j*bp[i];q[tail].num=j;
while(q[head].num>bs[i]+j) head++;
dp[i][j]=max(dp[i][j],q[head].x-j*bp[i]);
}
}
int ans=;
for(int i=;i<=maxp;i++)
{
ans=max(ans,dp[n][i]);
}
printf("%d\n",ans);
} return ;
}

单调队列优化dp