好神啊..
首先递推随便yy一下就行了
然后发现可以用矩阵优化,不过显然是n^3logk的,不资磁
于是就有了性质,这个转移矩阵显然是一个循环矩阵(并不知道)
循环矩阵乘循环矩阵还是循环矩阵
然后就可以O(n)记录矩阵,O(n^2)完成乘法
然后就资磁啦
复杂度O(n^2logn)
详见代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#define N 1003 using namespace std;
inline int read(){
int ret=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while ('0'<=ch&&ch<='9'){
ret=ret*10-48+ch;
ch=getchar();
}
return ret;
} struct matrix{
int size;
double a[N];
} A; #define val(z,u,v) z.a[(v-u+z.size)%z.size+1]
inline matrix operator *(const matrix &x,const matrix &y){
matrix ret;
ret.size=x.size;
for (int i=1;i<=ret.size;++i){
ret.a[i]=0;
for (int j=1;j<=ret.size;++j)
ret.a[i]+=x.a[j]*val(y,j,i);
}
return ret;
} inline matrix pow_mat(matrix x,int y){
matrix ret;
ret.size=x.size;
memset(ret.a,0,sizeof(ret.a));
ret.a[1]=1;
while (y){
if (y&1) ret=ret*x;
x=x*x;
y=y>>1;
}
return ret;
} int a[N]; int main(){
int n=read(),m=read(),k=read();
for (int i=1;i<=n;++i) a[i]=read();
if (n==1){printf("%.3f\n",(double)m);return 0;}
A.size=n;
memset(A.a,0,sizeof(A.a));
A.a[1]=(double)(m-1)/(double)m;
A.a[2]=1.0/(double)m;
A=pow_mat(A,k);
for (int i=1;i<=n;++i){
double now=0;
for (int j=1;j<=n;++j)
now+=(double)a[j]*val(A,j,i);
printf("%.3f\n",now);
}
return 0;
}
双倍经验万岁
bzoj2510