T了一版....是因为我找质因数的姿势不对...
考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了.
但是我们可以做的更好.
注意到h(n) = ∑ d * phi(n / d) (d | n) 是狄利克雷卷积的形式, 而且f(x) = x 和 f(x) = phi(x) 都是积性函数, 所以答案h(x) 也是积性函数.
所以h(x) = Π h(p^k) (p 是 x 的质因数)
由phi(p^k) = p^k - p^(k-1), h(p^k) 很好求. 化简一下得到 h(p^k) = (k + 1) * p^k - k * p^(k - 1)
--------------------------------------------------------------------------------------
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll n, ans = 1, cnt , h;
cin >> n;
for(ll p = 2; p * p <= n; p++) if(n % p == 0) {
cnt = 0; h = 1;
for(; n % p == 0; n /= p, h *= p) cnt++;
ans *= (cnt + 1) * h - cnt * h / p;
}
if(n != 1) ans *= 2 * n - 1;
cout << ans << "\n";
return 0;
}
--------------------------------------------------------------------------------------
2705: [SDOI2012]Longge的问题
Time Limit: 3 Sec Memory Limit: 128 MB
Submit: 1508 Solved: 937
[Submit][Status][Discuss]
Description
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
Input
一个整数,为N。
Output
一个整数,为所求的答案。
Sample Input
6
Sample Output
15
HINT
【数据范围】
对于60%的数据,0<N<=2^16。
对于100%的数据,0<N<=2^32。