codeforce vk cup2017

时间:2021-09-06 19:41:17
D. k-Interesting Pairs Of Integers
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasya has the sequence consisting of n integers. Vasya consider the pair of integers x and y k-interesting, if their binary representation differs from each other exactly in k bits. For example, if k = 2, the pair of integers x = 5 and y = 3 is k-interesting, because their binary representation x=101 and y=011 differs exactly in two bits.

Vasya wants to know how many pairs of indexes (i, j) are in his sequence so that i < j and the pair of integers ai and aj is k-interesting. Your task is to help Vasya and determine this number.

Input

The first line contains two integers n and k (2 ≤ n ≤ 105, 0 ≤ k ≤ 14) — the number of integers in Vasya's sequence and the number of bits in which integers in k-interesting pair should differ.

The second line contains the sequence a1, a2, ..., an (0 ≤ ai ≤ 104), which Vasya has.

Output

Print the number of pairs (i, j) so that i < j and the pair of integers ai and aj is k-interesting.

Examples
Input
4 1
0 3 2 1
Output
4
Input
6 0
200 100 100 100 200 200
Output
6
Note

In the first test there are 4 k-interesting pairs:

  • (1, 3),
  • (1, 4),
  • (2, 3),
  • (2, 4).

In the second test k = 0. Consequently, integers in any k-interesting pair should be equal to themselves. Thus, for the second test there are 6 k-interesting pairs:

  • (1, 5),
  • (1, 6),
  • (2, 3),
  • (2, 4),
  • (3, 4),
  • (5, 6).

用的新函数__builtin_popcount(i^j)计算i和j二进制不同的个数 用异或判断

#include<map>
#include<set>
#include<list>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const int N=,maxn=+,inf=0x3f3f3f3f; ll sum[maxn];
int main()
{
ll n,k,ans=;
memset(sum,,sizeof(sum));
scanf("%I64d%I64d",&n,&k);
for(int i=;i<n;i++)
{
ll a;
scanf("%I64d",&a);
sum[a]++;
}
if(!k)
{
for(int i=;i<=;i++)
ans+=(sum[i]*(sum[i]-)/);
}
else
{
for(int i=;i<=;i++)
for(int j=;j<i;j++)
if(__builtin_popcount(i^j)==k)
ans+=(sum[i]*sum[j]);
}
printf("%I64d\n",ans);
return ;
}
/*
4 1
0 3 2 1
4
*/