时光飞逝,亲朋会一个一个离我们远去,孤独漂泊一阵子后,我们自己也要离开,
代码:
%% ------------------------------------------------------------------------ %% Output Info about this m-file fprintf('\n***********************************************************\n'); fprintf(' <DSP using MATLAB> Problem 8.22 \n\n'); banner(); %% ------------------------------------------------------------------------ % ------------------------------- % ω = ΩT = 2πF/fs % Digital Filter Specifications: % ------------------------------- wp = 0.4*pi; % digital passband freq in rad/sec ws = 0.6*pi; % digital stopband freq in rad/sec Rp = 0.5; % passband ripple in dB As = 50; % stopband attenuation in dB Ripple = 10 ^ (-Rp/20) % passband ripple in absolute Attn = 10 ^ (-As/20) % stopband attenuation in absolute % Analog prototype specifications: Inverse Mapping for frequencies T = 2; % set T = 1 Fs = 1/T; OmegaP = wp/T; % prototype passband freq OmegaS = ws/T; % prototype stopband freq % Analog Butterworth Prototype Filter Calculation: [cs, ds] = afd_butt(OmegaP, OmegaS, Rp, As); % Calculation of second-order sections: fprintf('\n***** Cascade-form in s-plane: START *****\n'); [CS, BS, AS] = sdir2cas(cs, ds) fprintf('\n***** Cascade-form in s-plane: END *****\n'); % Calculation of Frequency Response: [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 0.5*pi); % Calculation of Impulse Response: [ha, x, t] = impulse(cs, ds); % Impulse Invariance Transformation: [b, a] = imp_invr(cs, ds, T); [C, B, A] = dir2par(b, a) % Calculation of Frequency Response: [db, mag, pha, grd, ww] = freqz_m(b, a); %% ----------------------------------------------------------------- %% Plot %% ----------------------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 8.22 Analog Butterworth lowpass') set(gcf,'Color','white'); M = 1; % Omega max subplot(2,2,1); plot(ww_s, mag_s/T); grid on; axis([-M, M, 0, 1.2]); xlabel(' Analog frequency in \pi units'); ylabel('|H|'); title('Magnitude in Absolute'); set(gca, 'XTickMode', 'manual', 'XTick', [-0.3, -0.2, 0, 0.2, 0.3, 0.4, 0.6]); set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0032, 0.5, 0.9441, 1]); subplot(2,2,2); plot(ww_s, db_s); grid on; %axis([0, M, -50, 10]); xlabel('Analog frequency in \pi units'); ylabel('Decibels'); title('Magnitude in dB '); set(gca, 'XTickMode', 'manual', 'XTick', [-0.3, -0.2, 0, 0.4, 0.6]); set(gca, 'YTickMode', 'manual', 'YTick', [-65, -50, -1, 0]); set(gca,'YTickLabelMode','manual','YTickLabel',['65';'50';' 1';' 0']); subplot(2,2,3); plot(ww_s, pha_s/pi); grid on; axis([-M, M, -1.2, 1.2]); xlabel('Analog frequency in \pi nuits'); ylabel('radians'); title('Phase Response'); set(gca, 'XTickMode', 'manual', 'XTick', [-0.3, -0.2, 0, 0.4, 0.6]); set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]); subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response'); figure('NumberTitle', 'off', 'Name', 'Problem 8.22 Digital Butterworth lowpass') set(gcf,'Color','white'); M = 2; % Omega max subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on; xlabel(' frequency in \pi units'); ylabel('|H|'); title('Magnitude Response'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]); set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0032, 0.5, 0.9441, 1]); subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on; xlabel('frequency in \pi nuits'); ylabel('radians in \pi units'); title('Phase Response'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]); set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]); subplot(2,2,3); plot(ww/pi, db); axis([0, M, -100, 10]); grid on; xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude in dB '); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]); set(gca, 'YTickMode', 'manual', 'YTick', [-70, -50, -1, 0]); set(gca,'YTickLabelMode','manual','YTickLabel',['70';'50';' 1';' 0']); subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]); xlabel('frequency in \pi units'); ylabel('Samples'); title('Group Delay'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]); %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]); figure('NumberTitle', 'off', 'Name', 'Problem 8.22 Pole-Zero Plot') set(gcf,'Color','white'); zplane(b,a); title(sprintf('Pole-Zero Plot')); %pzplotz(b,a); % ---------------------------------------------- % Calculation of Impulse Response % ---------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 8.22 Imp & Freq Response') set(gcf,'Color','white'); t = [0:0.01:80]; subplot(2,1,1); impulse(cs,ds,t); grid on; % Impulse response of the analog filter axis([0,80,-0.2,0.3]);hold on n = [0:1:80/T]; hn = filter(b,a,impseq(0,0,80/T)); % Impulse response of the digital filter stem(n*T,hn); xlabel('time in sec'); title ('Impulse Responses'); hold off % Calculation of Frequency Response: [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T); % Analog frequency s-domain [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a); % Digital z-domain %% ----------------------------------------------------------------- %% Plot %% ----------------------------------------------------------------- subplot(2,1,2); plot(wws/(2*pi),mags*Fs,'b+', wwz/(2*pi)*Fs,magz,'r'); grid on; xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); text(-0.3,0.15,'Analog filter'); text(0.4,0.55,'Digital filter');
运行结果:
通带、阻带绝对指标
模拟原型butterworth低通滤波器直接形式系数
模拟原型butterworth低通滤波器串联形式系数
脉冲响应不变法,模拟低通转换成数字低通,并联形式系数