代码:
%% ------------------------------------------------------------------------ %% Output Info about this m-file fprintf('\n***********************************************************\n'); fprintf(' <DSP using MATLAB> Problem 8.8 \n\n'); banner(); %% ------------------------------------------------------------------------ % digital iir highpass filter b = [1 -1]; a = [1 -0.9]; figure('NumberTitle', 'off', 'Name', 'Problem 8.8 Pole-Zero Plot') set(gcf,'Color','white'); zplane(b,a); title(sprintf('Pole-Zero Plot')); %pzplotz(b,a); % corresponding system function Direct form K = 1; % gain parameter b = K*b; % denominator a = a; % numerator [db, mag, pha, grd, w] = freqz_m(b, a); % --------------------------------------------------------------------- % Choose the gain parameter of the filter, maximum gain is equal to 1 % --------------------------------------------------------------------- gain1=max(mag) % with poles K = 1/gain1 [db, mag, pha, grd, w] = freqz_m(K*b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.8 IIR highpass filter') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]); xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]); % Impulse Response fprintf('\n----------------------------------'); fprintf('\nPartial fraction expansion method: \n'); [R, p, c] = residuez(K*b,a) MR = (abs(R))' % Residue Magnitude AR = (angle(R))'/pi % Residue angles in pi units Mp = (abs(p))' % pole Magnitude Ap = (angle(p))'/pi % pole angles in pi units [delta, n] = impseq(0,0,50); h_chk = filter(K*b,a,delta); % check sequences % ------------------------------------------------------------------------------------------------ % gain parameter K=0.95 % ------------------------------------------------------------------------------------------------ h = ( 0.9.^n ) .* (-0.1056) + 1.0556 * delta; % ------------------------------------------------------------------------------------------------ figure('NumberTitle', 'off', 'Name', 'Problem 8.8 IIR hp filter, h(n) by filter and Inv-Z ') set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]); xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]); xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.8 IIR filter, h(n) by Inv-Z ') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]); % -------------------------------------------------- % digital IIR comb filter % -------------------------------------------------- b = K*[1 0 0 0 0 0 -1]; a = [1 0 0 0 0 0 -0.9]; figure('NumberTitle', 'off', 'Name', 'Problem 8.8 Pole-Zero Plot') set(gcf,'Color','white'); zplane(b,a); title(sprintf('Pole-Zero Plot')); [db, mag, pha, grd, w] = freqz_m(b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.8 IIR comb filter') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]); xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]); % Impulse Response fprintf('\n----------------------------------'); fprintf('\nPartial fraction expansion method: \n'); [R, p, c] = residuez(b,a) MR = (abs(R))' % Residue Magnitude AR = (angle(R))'/pi % Residue angles in pi units Mp = (abs(p))' % pole Magnitude Ap = (angle(p))'/pi % pole angles in pi units [delta, n] = impseq(0,0,250); h_chk = filter(b,a,delta); % check sequences % ------------------------------------------------------------------------------------------------ % gain parameter K=0.95 % ------------------------------------------------------------------------------------------------ %h = 0.0211 * (( 0.9791.^n ) .* (2*cos(0.4*pi*n) + 2*cos(0.8*pi*n) + 1)) - 0.0556*delta; %L=5; h = -0.0176 * ( ( 0.9826.^n ) .* ( 2*cos(2*pi*n/3) + 2*cos(pi*n/3) + (-1).^n + 1) ) + 1.0556*delta; %L=6; % ------------------------------------------------------------------------------------------------ figure('NumberTitle', 'off', 'Name', 'Problem 8.8 Comb filter, h(n) by filter and Inv-Z ') set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]); xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]); xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.8 Comb filter, h(n) by Inv-Z ') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]);
运行结果:
增益系数K
单个iir高通滤波器,零极点图
L=6阶梳状,系统函数部分分式展开
零极点的模和幅角
直接形式分子、分母系数直接求幅度谱、相位谱和群延迟
依据梳状滤波器系统函数部分分式展开,求逆z变换得到脉冲响应序列,由其求幅度谱、相位谱和群延迟,如下
直接形式求法和逆z变换求法,幅度谱、相位谱一致,但群延迟不同。