TopCoder[SRM513 DIV 1]:Reflections(1000)

时间:2022-01-16 17:33:32

Problem Statement

     Manao is playing a new game called Reflections. The goal of the game is transferring an artifact in 3-dimensional space from point (0, 0, 0) to point (X, Y, Z). There are two types of moves in the game:

1) The player can move the artifact by 1 unit in the direction of any coordinate axis. So, using this type of move, from point (a, b, c) the artifact can be moved to points (a + 1, b, c), (a - 1, b, c), (a, b + 1, c), (a, b - 1, c), (a, b, c + 1) or (a, b, c - 1).

2) The player can reflect the artifact against any one of the given planes. The reflection works as follows: the artifact disappears at its position before the reflection and appears on the other side of the plane at such a place that the line connecting the old and new positions is perpendicular to the plane and the old and new positions are equidistant from the plane. Reflection against each particular plane can be performed at most once during the game.

The planes are given as vector <int>s mirrorXmirrorY and mirrorZmirrorX[i] corresponds to a plane perpendicular to the X axis with coordinate X = mirrorX[i]mirrorY and mirrorZcontain planes perpendicular to the Y and Z axis in the same fashion. The target position is given in vector <int> finalPositionfinalPosition contains 3 elements, wherefinalPosition[0] is X, finalPosition[1] is Y and finalPosition[2] is Z.

Return the minimum possible number of moves which Manao will need to transfer the artifact.

Definition

    
Class: Reflections
Method: minimumMoves
Parameters: vector <int>, vector <int>, vector <int>, vector <int>
Returns: long long
Method signature: long long minimumMoves(vector <int> mirrorX, vector <int> mirrorY, vector <int> mirrorZ, vector <int> finalPosition)
(be sure your method is public)

Limits

    
Time limit (s): 2.000
Memory limit (MB): 64

Constraints

- finalPosition will contain exactly 3 elements.
- Each element of finalPosition will be between -1,000,000,000 and 1,000,000,000, inclusive.
- mirrorX will contain between 0 and 20 elements, inclusive.
- Each element of mirrorX will be between -1,000,000,000 and 1,000,000,000, inclusive.
- All elements of mirrorX will be distinct.
- mirrorY will contain between 0 and 20 elements, inclusive.
- Each element of mirrorY will be between -1,000,000,000 and 1,000,000,000, inclusive.
- All elements of mirrorY will be distinct.
- mirrorZ will contain between 0 and 20 elements, inclusive.
- Each element of mirrorZ will be between -1,000,000,000 and 1,000,000,000, inclusive.
- All elements of mirrorZ will be distinct.

Examples

0)  
    
{2}
{}
{}
{3, 0, 1}
Returns: 3
Manao can reflect the artifact against the only given plane, making it appear at (4, 0, 0). Afterwards, he can transfer it into the target position by two moves of the first type.
1)  
    
{-5, 1, 4, 2, 3, 6, -6}
{}
{}
{9, 0, 0}
Returns: 2
A possible solution will be moving the artifact to (-1, 0, 0) and then reflecting it against the plane represented by mirrorX[2].
2)  
    
{5, 8}
{}
{}
{4, 0, 0}
Returns: 4
If a reflection against a particular plane was allowed more than once, Manao could transfer the artifact in only three moves.
3)  
    
{5}
{5}
{1, 2, 3}
{10, 12, -1}
Returns: 5
The planes perpendicular to the Z axis are of no use. After performing the reflections against the other two planes, Manao gets the artifact to point (10, 10, 0). Three more moves of the first type are required then.
4)  
    
{8, -3, 21}
{4, 5}
{-7, -2, -1, 7, 14}
{40, -4, 31}
Returns: 10
 

题意大致是:在三维空间中,从原点走到(x,y,z),每次可以向六个方向中的一个方向走一步,或者沿一面镜子对称,问至少行动多少次可以到达终点。

每面镜子都是垂直于x轴、y轴、z轴中的一条轴的平面,且垂直于一条轴的镜子数最多为20。每面镜子最多被用来对称一次。

题解:

代码来自TopCoder Wiki。

若直接进行移动,则只会改变三维中的一维,做对称也一样,所以三维可以分开讨论。

因为镜像操作只是进行对称,所以直接移动可以放在最后进行。这样,我们只要搜索按哪种顺序选用了哪些镜子,将得到的坐标与终点做差,即为在这个维度直接移动的次数。

直接枚举显然会超时,我们可以考虑优化。

考虑垂直于x轴的镜子的操作:若点坐标为a,镜子坐标为b,则对称后点坐标为2*b-a。

经过一系列对称,最终点坐标展开为(2*b[n]-2*b[n-1]+2*[b-2]-......-2*b[2]+2*b[1]-a)或(2*b[n]-2*b[n-1]+2*[b-2]-......+2*b[2]-2*b[1]+a)。

即某面被选用镜子操作的贡献只与选用顺序序号的奇偶性有关。

可以枚举n面奇数序号的镜子与n面偶数序号的镜子,原坐标贡献为正;或枚举n面奇数序号的镜子与n+1面偶数序号的镜子,原坐标贡献为负。

可是这样枚举依旧会TLE。

我们可以采用折半搜索,就不会TLE了,可是十分不好写。

事实上,我们可以分别枚举奇数序号镜子的集合与偶数序号镜子的集合,而不用考虑重复的情况。对于重复的情况,可以看做是一面镜子用了两次(效果等同于不使用),可以正常处理,但一定不是最优解。

枚举好后,用类似于折半搜索的做法合并即可。

代码:

 class Reflections
{
public:
long long solve(vector<int>& M, int P)
{
int N = M.size();
// Compute the sum of each subset.
vector<long long> V[];
for(int i = ; i < << N; i++)
{
long long sum = ;
for(int j = ; j < N; j++) if(i & << j) sum += M[j] * 2ll;
V[__builtin_popcount(i)].push_back(sum);
}
// For each subset find the subset of the same or one lesser size that puts us closest to our target.
long long ret = abs(P);
for(int i = ; i <= (N + ) / ; i++)
{
sort(V[i].begin(), V[i].end());
for(int j = ; j < V[i].size(); j++)
{
// Find subsets of equal size that put us close to P.
int pos = upper_bound(V[i].begin(), V[i].end(), V[i][j] - P) - V[i].begin();
if(pos < V[i].size()) ret = min(ret, * i + abs(P - V[i][j] + V[i][pos]));
if(pos > ) ret = min(ret, * i + abs(P - V[i][j] + V[i][pos - ])); // Find subsets of one lesser size that put us close to P.
if(!i) continue;
pos = upper_bound(V[i - ].begin(), V[i - ].end(), V[i][j] - P) - V[i - ].begin();
if(pos < V[i - ].size()) ret = min(ret, * i - + abs(P - V[i][j] + V[i - ][pos]));
if(pos > ) ret = min(ret, * i - + abs(P - V[i][j] + V[i - ][pos - ]));
}
}
return ret;
}
long long minimumMoves(vector<int> X, vector<int> Y, vector<int> Z, vector<int> P)
{
return solve(X, P[]) + solve(Y, P[]) + solve(Z, P[]);
}
};