作业内容:
数据:
y | x1 | x2 | x3 | x4 | x5 |
271.8 | 783.35 | 33.53 | 40.55 | 16.66 | 13.2 |
264 | 748.45 | 36.5 | 36.19 | 16.46 | 14.11 |
238.8 | 684.45 | 34.66 | 37.31 | 17.66 | 15.68 |
230.7 | 827.8 | 33.13 | 32.52 | 17.5 | 10.53 |
251.6 | 860.45 | 35.75 | 33.71 | 16.4 | 11 |
257.9 | 875.15 | 34.46 | 34.14 | 16.28 | 11.31 |
263.9 | 909.45 | 34.6 | 34.85 | 16.06 | 11.96 |
266.5 | 905.55 | 35.38 | 35.89 | 15.93 | 12.58 |
229.1 | 756 | 35.85 | 33.53 | 16.6 | 10.56 |
239.3 | 769.35 | 35.68 | 33.79 | 16.41 | 10.85 |
258 | 793.5 | 35.35 | 34.72 | 16.17 | 11.41 |
257.6 | 801.65 | 35.04 | 35.22 | 15.92 | 11.91 |
267.3 | 819.65 | 34.07 | 36.5 | 16.04 | 12.85 |
267 | 808.55 | 32.2 | 37.6 | 16.19 | 13.58 |
259.6 | 774.95 | 34.32 | 37.89 | 16.62 | 14.21 |
240.4 | 711.85 | 31.08 | 37.71 | 17.37 | 15.56 |
227.2 | 694.85 | 35.73 | 37 | 18.12 | 15.83 |
196 | 638.1 | 34.11 | 36.76 | 18.53 | 16.41 |
278.7 | 774.55 | 34.79 | 34.62 | 15.54 | 13.1 |
272.3 | 757.9 | 35.77 | 35.4 | 15.7 | 13.63 |
267.4 | 753.35 | 36.44 | 35.96 | 16.45 | 14.51 |
254.5 | 704.7 | 37.82 | 36.26 | 17.62 | 15.38 |
224.7 | 666.8 | 35.07 | 36.34 | 18.12 | 16.1 |
181.5 | 568.55 | 35.26 | 35.9 | 19.05 | 16.73 |
227.5 | 653.1 | 35.56 | 31.84 | 16.51 | 10.58 |
253.6 | 704.05 | 35.73 | 33.16 | 16.02 | 11.28 |
263 | 709.6 | 36.46 | 33.83 | 15.89 | 11.91 |
265.8 | 726.9 | 36.26 | 34.89 | 15.83 | 12.65 |
263.8 | 697.15 | 37.2 | 36.27 | 16.71 | 14.06 |
data<-read.csv("data4th.csv")
lm1<-lm(y~.,data=data)
#向前法
step(lm1,direction="forward")
#逐步回归
step(lm1)
#所有可能回归
library(leaps)
regsubsets(y~.,data=data)#基于调整R^2