解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括:
- Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负;
- Bellman-Ford 单源最短路径算法:时间复杂度为 O(VE),适用于带负权值情况;
对于全源最短路径问题(All-Pairs Shortest Paths Problem),可以认为是单源最短路径问题的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离。例如,对每个顶点应用 Bellman-Ford 算法,则可得到所有顶点间的最短路径的运行时间为 O(V2E),由于图中顶点都是连通的,而边的数量可能会比顶点更多,这个时间没有比 Floyd-Warshall 全源最短路径算法 O(V3) 更优。那么,再试下对每个顶点应用 Dijkstra 算法,则可得到所有顶点间的最短路径的运行时间为 O(VE + V2logV),看起来优于 Floyd-Warshall 算法的 O(V3),所以看起来使用基于 Dijkstra 算法的改进方案好像更好,但问题是 Dijkstra 算法要求图中所有边的权值非负,不适合通用的情况。
在 1977 年,Donald B. Johnson 提出了对所有边的权值进行 "re-weight" 的算法,使得边的权值非负,进而可以使用 Dijkstra 算法进行最短路径的计算。
我们先自己思考下如何进行 "re-weight" 操作,比如,简单地对每条边的权值加上一个较大的正数,使其非负,是否可行?
1 1 1
s-----a-----b-----c
\ /
\ /
\______/
4
比如上面的图中,共 4 条边,权值分别为 1,1,1,4。当前 s --> c 的最短路径是 {s-a, a-b, b-c} 即 1+1+1=3。而如果将所有边的权值加 1,则最短路径就会变成 {s-c} 的 5,因为 2+2+2=6,实际上导致了最短路径的变化,显然是错误的。
那么,Johnson 算法是如何对边的权值进行 "re-weight" 的呢?以下面的图 G 为例,有 4 个顶点和 5 条边。
首先,新增一个源顶点 4,并使其与所有顶点连通,新边赋权值为 0,如下图所示。
使用 Bellman-Ford 算法 计算新的顶点到所有其它顶点的最短路径,则从 4 至 {0, 1, 2, 3} 的最短路径分别是 {0, -5, -1, 0}。即有 h[] = {0, -5, -1, 0}。当得到这个 h[] 信息后,将新增的顶点 4 移除,然后使用如下公式对所有边的权值进行 "re-weight":
w(u, v) = w(u, v) + (h[u] - h[v]).
则可得到下图中的结果:
此时,所有边的权值已经被 "re-weight" 为非负。此时,就可以利用 Dijkstra 算法对每个顶点分别进行最短路径的计算了。
Johnson 算法描述如下:
- 给定图 G = (V, E),增加一个新的顶点 s,使 s 指向图 G 中的所有顶点都建立连接,设新的图为 G’;
- 对图 G’ 中顶点 s 使用 Bellman-Ford 算法计算单源最短路径,得到结果 h[] = {h[0], h[1], .. h[V-1]};
- 对原图 G 中的所有边进行 "re-weight",即对于每个边 (u, v),其新的权值为 w(u, v) + (h[u] - h[v]);
- 移除新增的顶点 s,对每个顶点运行 Dijkstra 算法求得最短路径;
Johnson 算法的运行时间为 O(V2logV + VE)。
Johnson 算法伪码实现如下:
Johnson 算法 C# 代码实现如下:
using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
// build a directed and negative weighted graph
Graph directedGraph1 = new Graph();
directedGraph1.AddEdge(, , -);
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , -); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", directedGraph1.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", directedGraph1.EdgeCount);
Console.WriteLine(); int[,] distSet1 = directedGraph1.Johnsons();
PrintSolution(directedGraph1, distSet1); // build a directed and positive weighted graph
Graph directedGraph2 = new Graph();
directedGraph2.AddEdge(, , );
directedGraph2.AddEdge(, , );
directedGraph2.AddEdge(, , );
directedGraph2.AddEdge(, , ); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", directedGraph2.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", directedGraph2.EdgeCount);
Console.WriteLine(); int[,] distSet2 = directedGraph2.Johnsons();
PrintSolution(directedGraph2, distSet2); Console.ReadKey();
} private static void PrintSolution(Graph g, int[,] distSet)
{
Console.Write("\t");
for (int i = ; i < g.VertexCount; i++)
{
Console.Write(i + "\t");
}
Console.WriteLine();
Console.Write("\t");
for (int i = ; i < g.VertexCount; i++)
{
Console.Write("-" + "\t");
}
Console.WriteLine();
for (int i = ; i < g.VertexCount; i++)
{
Console.Write(i + "|\t");
for (int j = ; j < g.VertexCount; j++)
{
if (distSet[i, j] == int.MaxValue)
{
Console.Write("INF" + "\t");
}
else
{
Console.Write(distSet[i, j] + "\t");
}
}
Console.WriteLine();
}
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public void Reweight(int newWeight)
{
this.Weight = newWeight;
} public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public int EdgeCount
{
get
{
return _adjacentEdges.Values.SelectMany(e => e).Count();
}
} public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} public void AddEdge(Edge edge)
{
AddEdge(edge.Begin, edge.End, edge.Weight);
} public void AddEdges(IEnumerable<Edge> edges)
{
foreach (var edge in edges)
{
AddEdge(edge);
}
} public IEnumerable<Edge> GetAllEdges()
{
return _adjacentEdges.Values.SelectMany(e => e);
} public int[,] Johnsons()
{
// distSet[,] will be the output matrix that will finally have the shortest
// distances between every pair of vertices
int[,] distSet = new int[VertexCount, VertexCount]; for (int i = ; i < VertexCount; i++)
{
for (int j = ; j < VertexCount; j++)
{
distSet[i, j] = int.MaxValue;
}
}
for (int i = ; i < VertexCount; i++)
{
distSet[i, i] = ;
} // step 1: add new vertex s and connect to all vertices
Graph g = new Graph(this.VertexCount + );
g.AddEdges(this.GetAllEdges()); int s = this.VertexCount;
for (int i = ; i < this.VertexCount; i++)
{
g.AddEdge(s, i, );
} // step 2: use Bellman-Ford to evaluate shortest paths from s
int[] h = g.BellmanFord(s); // step 3: re-weighting edges of the original graph
// w(u, v) = w(u, v) + (h[u] - h[v])
foreach (var edge in this.GetAllEdges())
{
edge.Reweight(edge.Weight + (h[edge.Begin] - h[edge.End]));
} // step 4: use Dijkstra for each edges
for (int begin = ; begin < this.VertexCount; begin++)
{
int[] dist = this.Dijkstra(begin);
for (int end = ; end < dist.Length; end++)
{
if (dist[end] != int.MaxValue)
{
distSet[begin, end] = dist[end] - (h[begin] - h[end]);
}
}
} return distSet;
} public int[,] FloydWarshell()
{
/* distSet[,] will be the output matrix that will finally have the shortest
distances between every pair of vertices */
int[,] distSet = new int[VertexCount, VertexCount]; for (int i = ; i < VertexCount; i++)
{
for (int j = ; j < VertexCount; j++)
{
distSet[i, j] = int.MaxValue;
}
}
for (int i = ; i < VertexCount; i++)
{
distSet[i, i] = ;
} /* Initialize the solution matrix same as input graph matrix. Or
we can say the initial values of shortest distances are based
on shortest paths considering no intermediate vertex. */
foreach (var edge in _adjacentEdges.Values.SelectMany(e => e))
{
distSet[edge.Begin, edge.End] = edge.Weight;
} /* Add all vertices one by one to the set of intermediate vertices.
---> Before start of a iteration, we have shortest distances between all
pairs of vertices such that the shortest distances consider only the
vertices in set {0, 1, 2, .. k-1} as intermediate vertices.
---> After the end of a iteration, vertex no. k is added to the set of
intermediate vertices and the set becomes {0, 1, 2, .. k} */
for (int k = ; k < VertexCount; k++)
{
// Pick all vertices as source one by one
for (int i = ; i < VertexCount; i++)
{
// Pick all vertices as destination for the above picked source
for (int j = ; j < VertexCount; j++)
{
// If vertex k is on the shortest path from
// i to j, then update the value of distSet[i,j]
if (distSet[i, k] != int.MaxValue
&& distSet[k, j] != int.MaxValue
&& distSet[i, k] + distSet[k, j] < distSet[i, j])
{
distSet[i, j] = distSet[i, k] + distSet[k, j];
}
}
}
} return distSet;
} public int[] BellmanFord(int source)
{
// distSet[i] will hold the shortest distance from source to i
int[] distSet = new int[VertexCount]; // Step 1: Initialize distances from source to all other vertices as INFINITE
for (int i = ; i < VertexCount; i++)
{
distSet[i] = int.MaxValue;
}
distSet[source] = ; // Step 2: Relax all edges |V| - 1 times. A simple shortest path from source
// to any other vertex can have at-most |V| - 1 edges
for (int i = ; i <= VertexCount - ; i++)
{
foreach (var edge in _adjacentEdges.Values.SelectMany(e => e))
{
int u = edge.Begin;
int v = edge.End;
int weight = edge.Weight; if (distSet[u] != int.MaxValue
&& distSet[u] + weight < distSet[v])
{
distSet[v] = distSet[u] + weight;
}
}
} // Step 3: check for negative-weight cycles. The above step guarantees
// shortest distances if graph doesn't contain negative weight cycle.
// If we get a shorter path, then there is a cycle.
foreach (var edge in _adjacentEdges.Values.SelectMany(e => e))
{
int u = edge.Begin;
int v = edge.End;
int weight = edge.Weight; if (distSet[u] != int.MaxValue
&& distSet[u] + weight < distSet[v])
{
Console.WriteLine("Graph contains negative weight cycle.");
}
} return distSet;
} public int[] Dijkstra(int source)
{
// dist[i] will hold the shortest distance from source to i
int[] distSet = new int[VertexCount]; // sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from source to i is finalized
bool[] sptSet = new bool[VertexCount]; // initialize all distances as INFINITE and stpSet[] as false
for (int i = ; i < VertexCount; i++)
{
distSet[i] = int.MaxValue;
sptSet[i] = false;
} // distance of source vertex from itself is always 0
distSet[source] = ; // find shortest path for all vertices
for (int i = ; i < VertexCount - ; i++)
{
// pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to source in first iteration.
int u = CalculateMinDistance(distSet, sptSet); // mark the picked vertex as processed
sptSet[u] = true; // update dist value of the adjacent vertices of the picked vertex.
for (int v = ; v < VertexCount; v++)
{
// update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from source to v through u is
// smaller than current value of dist[v]
if (!sptSet[v]
&& distSet[u] != int.MaxValue
&& _adjacentEdges.ContainsKey(u)
&& _adjacentEdges[u].Exists(e => e.End == v))
{
int d = _adjacentEdges[u].Single(e => e.End == v).Weight;
if (distSet[u] + d < distSet[v])
{
distSet[v] = distSet[u] + d;
}
}
}
} return distSet;
} private int CalculateMinDistance(int[] distSet, bool[] sptSet)
{
int minDistance = int.MaxValue;
int minDistanceIndex = -; for (int v = ; v < VertexCount; v++)
{
if (!sptSet[v] && distSet[v] <= minDistance)
{
minDistance = distSet[v];
minDistanceIndex = v;
}
} return minDistanceIndex;
}
}
}
}
运行结果如下:
参考资料
- 广度优先搜索
- 深度优先搜索
- Breadth First Traversal for a Graph
- Depth First Traversal for a Graph
- Dijkstra 单源最短路径算法
- Bellman-Ford 单源最短路径算法
- Bellman–Ford algorithm
- Introduction To Algorithm
- Floyd-Warshall's algorithm
- Bellman-Ford algorithm for single-source shortest paths
- Dynamic Programming | Set 23 (Bellman–Ford Algorithm)
- Dynamic Programming | Set 16 (Floyd Warshall Algorithm)
- Johnson’s algorithm for All-pairs shortest paths
- Floyd-Warshall's algorithm
- 最短路径算法--Dijkstra算法,Bellmanford算法,Floyd算法,Johnson算法
- QuickGraph, Graph Data Structures And Algorithms for .NET
- CHAPTER 26: ALL-PAIRS SHORTEST PATHS
本篇文章《Johnson 全源最短路径算法》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。