3551: [ONTAK2010]Peaks加强版

时间:2021-11-23 13:47:51

3551: [ONTAK2010]Peaks加强版

https://www.lydsy.com/JudgeOnline/problem.php?id=3551

分析:

  kruskal重构树 +  倍增 + 主席树。

  首先建立kruskal重构树,那么查询就变成了,在kruskal重构树上找倍增找到最上面的权值小于x的点(节点的权值为原图的边权),那么这棵树内的所有点都可以在经过权值小于x的点相互到达,所以在这棵树内查询第k大即可。dfs序后,变成序列上的问题,查询区间的第k大。

代码:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; struct Edge{
int u, v, w;
bool operator < (const Edge &A) const {
return w < A.w;
}
}e[];
int fa[N << ], f[N << ][], mx[N << ], st[N << ], pos[N << ], en[N << ], val[N], disc[N]; // mx[N<<1]
int sum[N * ], ls[N * ], rs[N * ], Root[N << ]; // 乘18,不要17
int n, m, Q, tot, Time_Index, tot_node;
vector<int> T[N << ]; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1 int find(int x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
void Kruskal() {
for (int i=; i<=n+n; ++i) fa[i] = i;
sort(e + , e + m + );
int cntedge = ; tot = n;
for (int i=; i<=m; ++i) {
int u = find(e[i].u), v = find(e[i].v);
if (u == v) continue;
++tot;
fa[u] = tot, fa[v] = tot;
f[u][] = tot, f[v][] = tot;
mx[tot] = e[i].w;
T[tot].push_back(u), T[tot].push_back(v);
// if (++cntedge == n + n - 1) break; // n + n - 1
}
}
void dfs(int u,int fa) {
st[u] = ++Time_Index;
pos[Time_Index] = u;
for (int sz=T[u].size(),i=; i<sz; ++i) {
int v = T[u][i];
if (v == fa) continue;
dfs(v, u);
}
en[u] = Time_Index;
}
void update(int l,int r,int &rt,int last,int p) {
rt = ++tot_node;
sum[rt] = sum[last] + ;
ls[rt] = ls[last], rs[rt] = rs[last];
if (l == r) return ;
int mid = (l + r) >> ;
if (p <= mid) update(l, mid, ls[rt], ls[last], p);
else update(mid + , r, rs[rt], rs[last], p);
}
int query(int l,int r,int Head,int Tail,int k) {
if (sum[Tail] - sum[Head] < k) return -;
if (l == r) return l;
int mid = (l + r) >> , cnt = sum[ls[Tail]] - sum[ls[Head]];
if (cnt >= k) return query(l, mid, ls[Head], ls[Tail], k);
else return query(mid + , r, rs[Head], rs[Tail], k - cnt);
}
int main() {
n = read(), m = read(), Q = read();
for (int i=; i<=n; ++i) val[i] = read(), disc[i] = val[i];
for (int i=; i<=m; ++i)
e[i].u = read(), e[i].v = read(), e[i].w = read(); sort(disc + , disc + n + );
int cnt = ;
for (int i=; i<=n; ++i) if (disc[i] != disc[cnt]) disc[++cnt] = disc[i]; // i=2
for (int i=; i<=n; ++i) val[i] = lower_bound(disc + , disc + cnt + , val[i]) - disc; Kruskal();
dfs(tot, ); for (int j=; j<=; ++j)
for (int i=; i<=tot; ++i) f[i][j] = f[f[i][j-]][j-]; for (int i=; i<=tot; ++i) {
if (pos[i] > n) Root[i] = Root[i - ];
else update(, cnt, Root[i], Root[i - ], val[pos[i]]); // val[pos[i]] !!!
} int lastans = ;
while (Q--) {
int v = read(), x = read(), k = read();
if (lastans != -) v ^= lastans, x ^= lastans, k ^= lastans;
for (int i=; i>=; --i)
if (f[v][i] && mx[f[v][i]] <= x) v = f[v][i];
int l = st[v], r = en[v];
k = sum[Root[r]] - sum[Root[l]] - k + ;
if (k <= ) { puts("-1"); lastans = -; continue; }
int p = query(, cnt, Root[l], Root[r], k);
if (p == -) { puts("-1"); lastans = -; continue; }
printf("%d\n",lastans = disc[p]);
}
return ;
}