AHOI2009最小割

时间:2021-04-15 13:44:08

1797: [Ahoi2009]Mincut 最小割

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1072  Solved: 446
[Submit][Status]

Description

A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路。设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路,需要代价ci。现在B国想找出一个路径切断方案,使中转站s不能到达中转站t,并且切断路径的代价之和最小。 小可可一眼就看出,这是一个求最小割的问题。但爱思考的小可可并不局限于此。现在他对每条单向道路提出两个问题: 问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题。

Input

第一行有4个正整数,依次为N,M,s和t。第2行到第(M+1)行每行3个正 整数v,u,c表示v中转站到u中转站之间有单向道路相连,单向道路的起点是v, 终点是u,切断它的代价是c(1≤c≤100000)。 注意:两个中转站之间可能有多条道路直接相连。 同一行相邻两数之间可能有一个或多个空格。

Output

对每条单向边,按输入顺序,依次输出一行,包含两个非0即1的整数,分 别表示对问题一和问题二的回答(其中输出1表示是,输出0表示否)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

Sample Input

6 7 1 6
1 2 3
1 3 2
2 4 4
2 5 1
3 5 5
4 6 2
5 6 3

Sample Output

1 0
1 0
0 0
1 0
0 0
1 0
1 0

HINT

设第(i+1)行输入的边为i号边,那么{1,2},{6,7},{2,4,6}是仅有的三个最小代价切割方案。它们的并是{1,2,4,6,7},交是 。

【数据规模和约定】

测试数据规模如下表所示 
数据编号 N M 数据编号 N M 
1 10 50 6 1000 20000 
2 20 200 7 1000 40000 
3 200 2000 8 2000 50000 
4 200 2000 9 3000 60000 
5 1000 20000 10 4000 60000

Source

Day1

题解:摘自jcvb

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

一个有向图,源点s,汇点t,问哪些边能够出现在某个最小割集中,哪些边必定出现在最小割集中。

求最大流,在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号。显然有id[s]!=id[t](否则s到t有通路,能继续增广)。
①对于任意一条满流边(u,v),(u,v)能够出现在某个最小割集中,当且仅当id[u]!=id[v];
②对于任意一条满流边(u,v),(u,v)必定出现在最小割集中,当且仅当id[u]==id[s]且id[v]==id[t]。

简要写一下证明:
首先,由最大流最小割定理易知最小割中的割边一定是满流边。

==>如果id[u]==id[v],则残余网络存在u->v的通路,通过(u,v)的割也必然通过这条通路上的某条非满流边,不会是最小割。(update:QAQ后来发现这个证明有问题。。。到时候再想想)
<==将每个SCC缩成一个点,得到的新图就只含有满流边了。那么新图的任一s-t割都对应原图的某个最小割,从中任取一个把id[u]和id[v]割开的割即可证明。


<==:假设将(u,v)的边权增大,那么残余网络中会出现s->u->v->t的通路,从而能继续增广,于是最大流流量(也就是最小割容量)会增大。这即说明(u,v)是最小割集中必须出现的边。
==>:上面的证明可以反推回去,略。

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

结论是正确的,可以AC

代码:

  const inf=maxlongint;
type node=record
from,go,next,v:longint;
end;
var tot,i,j,n,m,maxflow,l,r,s,t,x,y,z,ti,top,cnt,xx,yy:longint;
h,head,q,cur,low,dfn,sta,scc:array[..] of longint;
e:array[..] of node;
function min(x,y:longint):longint;
begin
if x<y then exit(x) else exit(y);
end;
procedure ins(x,y,z:longint);
begin
inc(tot);
e[tot].from:=x;e[tot].go:=y;e[tot].v:=z;e[tot].next:=head[x];head[x]:=tot;
end;
procedure insert(x,y,z:longint);
begin
ins(x,y,z);ins(y,x,);
end;
function bfs:boolean;
var i,x,y:longint;
begin
fillchar(h,sizeof(h),);
l:=;r:=;q[]:=s;h[s]:=;
while l<r do
begin
inc(l);
x:=q[l];
i:=head[x];
while i<> do
begin
y:=e[i].go;
if (e[i].v<>) and (h[y]=) then
begin
h[y]:=h[x]+;
inc(r);q[r]:=y;
end;
i:=e[i].next;
end;
end;
exit (h[t]<>);
end;
function dfs(x,f:longint):longint;
var i,y,used,tmp:longint;
begin
if x=t then exit(f);
used:=;
i:=cur[x];
while i<> do
begin
y:=e[i].go;
if (h[y]=h[x]+) and (e[i].v<>) then
begin
tmp:=dfs(y,min(e[i].v,f-used));
dec(e[i].v,tmp);if e[i].v<> then cur[x]:=i;
inc(e[i xor ].v,tmp);
inc(used,tmp);
if used=f then exit(f);
end;
i:=e[i].next;
end;
if used= then h[x]:=-;
exit(used);
end;
procedure dinic;
begin
while bfs do
begin
for i:= to n do cur[i]:=head[i];
inc(maxflow,dfs(s,inf));
end;
end;
procedure init;
begin
tot:=;
readln(n,m,s,t);
for i:= to m do
begin
readln(x,y,z);
insert(x,y,z);
end;
end;
procedure dfs(x:longint);
var i,y,z:longint;
begin
inc(ti);dfn[x]:=ti;low[x]:=ti;inc(top);sta[top]:=x;
i:=head[x];
while i<> do
begin
y:=e[i].go;
if e[i].v<> then
begin
if dfn[y]= then
begin
dfs(y);
low[x]:=min(low[x],low[y]);
end
else if scc[y]= then low[x]:=min(low[x],dfn[y]);
end;
i:=e[i].next;
end;
if low[x]=dfn[x] then
begin
inc(cnt);
while true do
begin
z:=sta[top];dec(top);
scc[z]:=cnt;
if z=x then break;
end;
end;
end;
procedure tarjan;
begin
ti:=;cnt:=;ti:=;
fillchar(dfn,sizeof(dfn),);
for i:= to n do if dfn[i]= then dfs(i);
end;
procedure main;
begin
dinic;
tarjan;
x:=scc[s];y:=scc[t];
for i:= to tot do
if (i and =) then
begin
if e[i].v<> then begin writeln('0 0');continue;end;
xx:=scc[e[i].from];yy:=scc[e[i].go];
if xx<>yy then write('') else write('');write(' ');
if (xx=x) and (yy=y) then write('') else write('');
writeln;
end;
end;
begin
assign(input,'input.txt');assign(output,'output.txt');
reset(input);rewrite(output);
init;
main;
close(input);close(output);
end.