深度学习之 mnist 手写数字识别
开始学习深度学习,先来一个手写数字的程序
import numpy as np
import os
import codecs
import torch
from PIL import Image
lr = 0.01
momentum = 0.5
epochs = 10
def get_int(b):
return int(codecs.encode(b, 'hex'), 16)
def read_label_file(path):
with open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2049
length = get_int(data[4:8])
parsed = np.frombuffer(data, dtype=np.uint8, offset=8)
return torch.from_numpy(parsed).view(length).long()
def read_image_file(path):
with open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2051
length = get_int(data[4:8])
num_rows = get_int(data[8:12])
num_cols = get_int(data[12:16])
images = []
parsed = np.frombuffer(data, dtype=np.uint8, offset=16)
return torch.from_numpy(parsed).view(length, num_rows, num_cols)
def loadmnist(path, kind='train'):
labels_path = os.path.join(path, 'mnist' ,'%s-labels.idx1-ubyte' % kind)
images_path = os.path.join(path,'mnist' ,'%s-images.idx3-ubyte' % kind)
labels = read_label_file(labels_path)
images = read_image_file(images_path)
return images, labels
import torch.utils.data as data
import torchvision.transforms as transforms
class Loader(data.Dataset):
def __init__(self, root, label, transforms):
self.imgs = []
imgs,labels = loadmnist(root, label)
self.imgs = imgs
self.labels = labels
self.transforms = transforms
def __getitem__(self, index):
img, label = self.imgs[index],self.labels[index]
img = Image.fromarray(img.numpy(), mode='L')
if self.transforms:
img = self.transforms(img)
return img, label
def __len__(self):
return len(self.imgs)
def getTrainDataset():
return Loader('d:\\work\\yoho\\dl\\dl-study\\chapter0\\', 'train', transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
]))
def getTestDataset():
return Loader('d:\\work\\yoho\\dl\\dl-study\\chapter0\\', 't10k', transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
]))
import torch as t
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(1, 10, kernel_size=5),
nn.MaxPool2d(2),
nn.ReLU(inplace=True),
nn.Conv2d(10, 20, kernel_size=5),
nn.Dropout2d(),
nn.MaxPool2d(2),
nn.ReLU(inplace=True),
)
self.classifier = nn.Sequential(
nn.Linear(320, 50),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(50, 10),
nn.LogSoftmax(dim=1)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
net = Net()
import torch.optim as optim
from torch.nn.modules import loss
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum)
criterion = loss.CrossEntropyLoss()
train_dataset = getTrainDataset()
test_dataset = getTestDataset()
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=4, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=False)
from torch.autograd import Variable as V
def train(epoch):
for i, (inputs, labels) in enumerate(train_loader):
inputs_var, labels_var = V(inputs), V(labels)
outputs = net(inputs_var)
losses = criterion(outputs, labels_var)
optimizer.zero_grad()
losses.backward()
optimizer.step()
def test(epoch):
for i, (inputs, labels) in enumerate(test_loader):
inputs_var = V(inputs)
outputs = net(inputs_var)
_, pred = outputs.data.topk(5, 1, True, True)
batch_size = labels.size(0)
pred = pred.t()
corrent = pred.eq(labels.view(1, -1).expand_as(pred))
res = []
for k in (1,5):
correct_k = corrent[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
print('{} {} top1 {} top5 {}'.format(epoch, i ,res[0][0], res[1][0]))
def main():
for epoch in range(0, epochs):
train(epoch)
test(epoch)
main()
学习之后的,正确率很高,这种问题对于深度学习已经解决了。