取模性质,快速幂,快速乘,gcd和最小公倍数

时间:2021-03-27 12:10:53

一.取模运算

取模(取余)运算法则:

1. (a+b)%p=(a%p+b%p)%p;

2.(a-b)%p=(a%p-b%p)%p;

3.(a*b)%p=(a%p * b%p)%p;

4.(a^b)%p=(   (a%p)^b  )%p;

5. (  (a+b)%p+c  )%p=( a+(b+c)%p  )%p;

6.( a*(b*c)%p )%p =( c*(a*b)%p )%p;

7.( (a+b)%p*c )%p= ( (a*c)%p + (b*c)%p )%p;

几条重要性质:

1.a≡b%p,呢么对于任意的c都有 (a+c)≡(b+c)%p, (a*c)≡(b*c)%p;

2.a≡b%p,c≡d%p呢么 (a+c)≡(b+d)%p,(a*c)≡(b*d)%p;

关于取余运算(rem)与取模运算(mod)的区别:

网上资料显示是他们的运算方式导致了有负数时出现不同结果

rem(a,b)=a-b*fix(a/b),是采用了fix()函数 向0方向取整(并且结果的正负一定与被除数 a 相同)

mod(a,b)=a-b*floor(a/b),采用了floor()函数 向负无穷方向取整 (并且结果的正负一定与除数 b 相同)

示例:mod(4,-3)= (4-(-3)*(-1.3) )= -  2 ; rem(4,-3)= (4-(-3)(-1.3) )= + 1; (我的DEV5.11采用的是rem)

快速幂,快速乘,gcd,最小公倍数模板代码:

#include<iostream>
#include<algorithm>
using namespace std;
/* 快速幂 ,快速乘,gcd,取模(取余)预算法则与取余预算区别*/
int main()
{
int a,b,c,d;
long long sum1=,sum2=;
cin>>a>>b>>c>>d; /*快速幂*/
while(b)
{
if(b%==)
sum1*=a;
b/=;
a*=a;
}
/*快速幂*/
cout<<sum1<<endl<<endl;
while(d)
{ if(d&)
sum2*=c;
c*=c;
d>>=;
}
cout<<sum2<<endl<<endl; /*快速乘*/
cin>>a>>b;
long long res=;
while(b!=)
{
if(b%==) res+=a;
a+=a;
b/=;
}
cout<<res<<endl<<endl;
/*快速乘 */
while(b>)
{
if (b&!=) res+=a;
a+=a;
b>>=;
}
cout<<res<<endl<<endl;
/* gcd */
int t,product;
cin>>a>>b;
product=a*b;
while(b)
{
t=b;
b=a%b;
a=t;
}
cout<<a<<" ";
cout<<"最小公倍数乘积除以最大公约数"
<<product/a<<endl<<endl;
cin>>a>>b;
/*百度大神代码*/
while(b^=a^=b^=a%=b);
cout<<a<<endl<<endl;
return ;
}