解析数据以使用Python创建json数据对象

时间:2021-12-28 11:48:13

Here is my data from google bigquery to parse:

这是我从google bigquery解析的数据:

{
    u'kind': u'bigquery#queryResponse',
    u'rows': [
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'995'
                },
                {
                    u'v': u'1600'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'942'
                },
                {
                    u'v': u'1607'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'937'
                },
                {
                    u'v': u'1599'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'894'
                },
                {
                    u'v': u'1598'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'848'
                },
                {
                    u'v': u'1592'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'841'
                },
                {
                    u'v': u'1590'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'786'
                },
                {
                    u'v': u'1603'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'779'
                },
                {
                    u'v': u'1609'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'762'
                },
                {
                    u'v': u'1597'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'753'
                },
                {
                    u'v': u'1594'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'740'
                },
                {
                    u'v': u'1596'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'738'
                },
                {
                    u'v': u'1612'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'718'
                },
                {
                    u'v': u'1590'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'717'
                },
                {
                    u'v': u'1610'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'715'
                },
                {
                    u'v': u'1602'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'680'
                },
                {
                    u'v': u'1606'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'674'
                },
                {
                    u'v': u'1603'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'639'
                },
                {
                    u'v': u'1603'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'637'
                },
                {
                    u'v': u'1603'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'634'
                },
                {
                    u'v': u'1590'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'633'
                },
                {
                    u'v': u'1599'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'616'
                },
                {
                    u'v': u'1596'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'614'
                },
                {
                    u'v': u'1596'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'612'
                },
                {
                    u'v': u'1595'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'607'
                },
                {
                    u'v': u'1603'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'579'
                },
                {
                    u'v': u'1593'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'570'
                },
                {
                    u'v': u'1600'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'541'
                },
                {
                    u'v': u'1599'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'525'
                },
                {
                    u'v': u'1608'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'520'
                },
                {
                    u'v': u'1599'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'518'
                },
                {
                    u'v': u'1602'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'486'
                },
                {
                    u'v': u'1595'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'470'
                },
                {
                    u'v': u'1593'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'433'
                },
                {
                    u'v': u'1609'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'429'
                },
                {
                    u'v': u'1607'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'421'
                },
                {
                    u'v': u'1611'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'399'
                },
                {
                    u'v': u'1592'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'363'
                },
                {
                    u'v': u'0'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'353'
                },
                {
                    u'v': u'1594'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'287'
                },
                {
                    u'v': u'1609'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'106'
                },
                {
                    u'v': u'0'
                }
            ]
        },
        {
            u'f': [
                {
                    u'v': u'the'
                },
                {
                    u'v': u'57'
                },
                {
                    u'v': u'1609'
                }
            ]
        }
    ],
    u'jobReference': {
        u'projectId': u'670640819051',
        u'jobId': u'job_5bf745fcee8b470e997d8ea90f380e68'
    },
    u'jobComplete': True,
    u'totalRows': u'42',
    u'schema': {
        u'fields': [
            {
                u'type': u'STRING',
                u'name': u'word',
                u'mode': u'NULLABLE'
            },
            {
                u'type': u'INTEGER',
                u'name': u'word_count',
                u'mode': u'NULLABLE'
            },
            {
                u'type': u'INTEGER',
                u'name': u'corpus_date',
                u'mode': u'NULLABLE'
            }
        ]
    }
}

Being a Python newbee, I really have no idea about how to go about parsing this data to create a json object like below:

作为一个Python newbee,我真的不知道如何解析这些数据来创建一个json对象,如下所示:

[
     {'count': 200, 'year': 2008},
     {'count': 240, 'year': 2010},
     {'count': 290, 'year': 2009}
]

Can any one give me any hint about how to get started?

任何人都可以给我任何关于如何开始的提示吗?

Example

[{u'v': u'the'}, {u'v': u'995'}, {u'v': u'1600'}]

In this for the word 'the', count is 995 and year is 1600. And so it follows.

在这个单词'the'中,计数是995,年是1600.所以接下来。

3 个解决方案

#1


26  

If 'Z' is your big dictionary, on 'response' you will get the structure you need.

如果'Z'是你的大词典,在'回复'上你将得到你需要的结构。

import json

response = []
for row in z['rows']:
    for key, dict_list in row.iteritems():
        count = dict_list[1]
        year = dict_list[2]
        response.append({'count': count['v'], 'year' : year['v']})

 print json.dumps(response)

On response you will get the following:

在回复时,您将获得以下信息:

[{'count': u'995', 'year': u'1600'},
 {'count': u'942', 'year': u'1607'},
 {'count': u'937', 'year': u'1599'},
 {'count': u'894', 'year': u'1598'},
 {'count': u'848', 'year': u'1592'},
 {'count': u'841', 'year': u'1590'},
 {'count': u'786', 'year': u'1603'},
 {'count': u'779', 'year': u'1609'},
 {'count': u'762', 'year': u'1597'},
 {'count': u'753', 'year': u'1594'},
 {'count': u'740', 'year': u'1596'},
 {'count': u'738', 'year': u'1612'},
 {'count': u'718', 'year': u'1590'},
 {'count': u'717', 'year': u'1610'},
 {'count': u'715', 'year': u'1602'},
 {'count': u'680', 'year': u'1606'},
 {'count': u'674', 'year': u'1603'},
 {'count': u'639', 'year': u'1603'},
 {'count': u'637', 'year': u'1603'},
 {'count': u'634', 'year': u'1590'},
 {'count': u'633', 'year': u'1599'},
 {'count': u'616', 'year': u'1596'},
 {'count': u'614', 'year': u'1596'},
 {'count': u'612', 'year': u'1595'},
 {'count': u'607', 'year': u'1603'},
 {'count': u'579', 'year': u'1593'},
 {'count': u'570', 'year': u'1600'},
 {'count': u'541', 'year': u'1599'},
 {'count': u'525', 'year': u'1608'},
 {'count': u'520', 'year': u'1599'},
 {'count': u'518', 'year': u'1602'},
 {'count': u'486', 'year': u'1595'},
 {'count': u'470', 'year': u'1593'},
 {'count': u'433', 'year': u'1609'},
 {'count': u'429', 'year': u'1607'},
 {'count': u'421', 'year': u'1611'},
 {'count': u'399', 'year': u'1592'},
 {'count': u'363', 'year': u'0'},
 {'count': u'353', 'year': u'1594'},
 {'count': u'287', 'year': u'1609'},
 {'count': u'106', 'year': u'0'},
 {'count': u'57', 'year': u'1609'}]

I believe its what you need. Than only use json and do a json.dumps to the response and that's it.

我相信你需要的东西。比只使用json并对响应做一个json.dumps就是这样。

#2


4  

You can easily convert python objects into JSON objects and viceversa using the module json. Foundamentally there are only 2 classes: JSONEncoder and JSONDecoder: the first turns python collections into JSON strings, the second a JSON string into a Python object.

您可以使用模块json轻松地将python对象转换为JSON对象,反之亦然。基本上只有两个类:JSONEncoder和JSONDecoder:第一个将python集合转换为JSON字符串,第二个将JSON字符串转换为Python对象。

Examples:

例子:

from json import JSONEncoder

jsonString = JSONEncoder().encode({
  "count": 222, 
  "year": 2012
})

the code above will generate a JSON string from a Python dictionary

上面的代码将从Python字典生成一个JSON字符串

from json import JSONDecoder

pyDictionary = JSONDecoder().decode('{"count": 222, "year": 2012}')

the code above will generate a python dictionary from a JSON string

上面的代码将从JSON字符串生成一个python字典

#3


0  

Version 0.28.0 and later of the google-cloud-bigquery library use a Row class to parse rows from a table or query.

google-cloud-bigquery库的0.28.0及更高版本使用Row类来解析表或查询中的行。

For example to print out the results from a query with a schema

例如,打印带有模式的查询的结果

[
   {
        u'type': u'STRING',
        u'name': u'word',
        u'mode': u'NULLABLE'
    },
    {
        u'type': u'INTEGER',
        u'name': u'word_count',
        u'mode': u'NULLABLE'
    },
    {
        u'type': u'INTEGER',
        u'name': u'corpus_date',
        u'mode': u'NULLABLE'
    },
]

as in your example, one could do

在你的例子中,人们可以做到

query = client.query('...')
rows = query.result()
for row in rows:
    # Access by column index.
    print('word: {}'.format(row[0]))
    # Access by column name.
    # The library parses the result into an integer object,
    # based on the schema.
    print('word_count: {}'.format(row['word_count']))
    # Access by column name, like an attribute.
    print('corpus_date: {}'.format(row.corpus_date))

In version 0.29.0 (not yet released as of 2017-12-04), there will be methods for keys(), values(), items(), and get(), just like a built-in dictionary object. (Added in PR #4393) So, to convert rows to a JSON-like dictionary in 0.29.0:

在版本0.29.0(2017-12-04尚未发布)中,将有key(),values(),items()和get()的方法,就像内置的字典对象一样。 (在PR#4393中添加)因此,要在0.29.0中将行转换为类似JSON的字典:

query = client.query('...')
rows = query.result()
for row in rows:
    row_json = dict(row.items())

#1


26  

If 'Z' is your big dictionary, on 'response' you will get the structure you need.

如果'Z'是你的大词典,在'回复'上你将得到你需要的结构。

import json

response = []
for row in z['rows']:
    for key, dict_list in row.iteritems():
        count = dict_list[1]
        year = dict_list[2]
        response.append({'count': count['v'], 'year' : year['v']})

 print json.dumps(response)

On response you will get the following:

在回复时,您将获得以下信息:

[{'count': u'995', 'year': u'1600'},
 {'count': u'942', 'year': u'1607'},
 {'count': u'937', 'year': u'1599'},
 {'count': u'894', 'year': u'1598'},
 {'count': u'848', 'year': u'1592'},
 {'count': u'841', 'year': u'1590'},
 {'count': u'786', 'year': u'1603'},
 {'count': u'779', 'year': u'1609'},
 {'count': u'762', 'year': u'1597'},
 {'count': u'753', 'year': u'1594'},
 {'count': u'740', 'year': u'1596'},
 {'count': u'738', 'year': u'1612'},
 {'count': u'718', 'year': u'1590'},
 {'count': u'717', 'year': u'1610'},
 {'count': u'715', 'year': u'1602'},
 {'count': u'680', 'year': u'1606'},
 {'count': u'674', 'year': u'1603'},
 {'count': u'639', 'year': u'1603'},
 {'count': u'637', 'year': u'1603'},
 {'count': u'634', 'year': u'1590'},
 {'count': u'633', 'year': u'1599'},
 {'count': u'616', 'year': u'1596'},
 {'count': u'614', 'year': u'1596'},
 {'count': u'612', 'year': u'1595'},
 {'count': u'607', 'year': u'1603'},
 {'count': u'579', 'year': u'1593'},
 {'count': u'570', 'year': u'1600'},
 {'count': u'541', 'year': u'1599'},
 {'count': u'525', 'year': u'1608'},
 {'count': u'520', 'year': u'1599'},
 {'count': u'518', 'year': u'1602'},
 {'count': u'486', 'year': u'1595'},
 {'count': u'470', 'year': u'1593'},
 {'count': u'433', 'year': u'1609'},
 {'count': u'429', 'year': u'1607'},
 {'count': u'421', 'year': u'1611'},
 {'count': u'399', 'year': u'1592'},
 {'count': u'363', 'year': u'0'},
 {'count': u'353', 'year': u'1594'},
 {'count': u'287', 'year': u'1609'},
 {'count': u'106', 'year': u'0'},
 {'count': u'57', 'year': u'1609'}]

I believe its what you need. Than only use json and do a json.dumps to the response and that's it.

我相信你需要的东西。比只使用json并对响应做一个json.dumps就是这样。

#2


4  

You can easily convert python objects into JSON objects and viceversa using the module json. Foundamentally there are only 2 classes: JSONEncoder and JSONDecoder: the first turns python collections into JSON strings, the second a JSON string into a Python object.

您可以使用模块json轻松地将python对象转换为JSON对象,反之亦然。基本上只有两个类:JSONEncoder和JSONDecoder:第一个将python集合转换为JSON字符串,第二个将JSON字符串转换为Python对象。

Examples:

例子:

from json import JSONEncoder

jsonString = JSONEncoder().encode({
  "count": 222, 
  "year": 2012
})

the code above will generate a JSON string from a Python dictionary

上面的代码将从Python字典生成一个JSON字符串

from json import JSONDecoder

pyDictionary = JSONDecoder().decode('{"count": 222, "year": 2012}')

the code above will generate a python dictionary from a JSON string

上面的代码将从JSON字符串生成一个python字典

#3


0  

Version 0.28.0 and later of the google-cloud-bigquery library use a Row class to parse rows from a table or query.

google-cloud-bigquery库的0.28.0及更高版本使用Row类来解析表或查询中的行。

For example to print out the results from a query with a schema

例如,打印带有模式的查询的结果

[
   {
        u'type': u'STRING',
        u'name': u'word',
        u'mode': u'NULLABLE'
    },
    {
        u'type': u'INTEGER',
        u'name': u'word_count',
        u'mode': u'NULLABLE'
    },
    {
        u'type': u'INTEGER',
        u'name': u'corpus_date',
        u'mode': u'NULLABLE'
    },
]

as in your example, one could do

在你的例子中,人们可以做到

query = client.query('...')
rows = query.result()
for row in rows:
    # Access by column index.
    print('word: {}'.format(row[0]))
    # Access by column name.
    # The library parses the result into an integer object,
    # based on the schema.
    print('word_count: {}'.format(row['word_count']))
    # Access by column name, like an attribute.
    print('corpus_date: {}'.format(row.corpus_date))

In version 0.29.0 (not yet released as of 2017-12-04), there will be methods for keys(), values(), items(), and get(), just like a built-in dictionary object. (Added in PR #4393) So, to convert rows to a JSON-like dictionary in 0.29.0:

在版本0.29.0(2017-12-04尚未发布)中,将有key(),values(),items()和get()的方法,就像内置的字典对象一样。 (在PR#4393中添加)因此,要在0.29.0中将行转换为类似JSON的字典:

query = client.query('...')
rows = query.result()
for row in rows:
    row_json = dict(row.items())