来自*:
C*********************** Contents **************************************** C* Principal Components Analysis: C, 638 lines. **************************** C* Sample input data set (final 36 lines). ********************************* C*************************************************************************** /*********************************/ /* Principal Components Analysis */ /*********************************/ /*********************************************************************/ /* Principal Components Analysis or the Karhunen-Loeve expansion is a classical method for dimensionality reduction or exploratory data analysis. One reference among many is: F. Murtagh and A. Heck, Multivariate Data Analysis, Kluwer Academic, Dordrecht, 1987. Author: F. Murtagh Phone: + 49 89 32006298 (work) + 49 89 965307 (home) Earn/Bitnet: fionn@dgaeso51, fim@dgaipp1s, murtagh@stsci Span: esomc1::fionn Internet: murtagh@scivax.stsci.edu F. Murtagh, Munich, 6 June 1989 */ /*********************************************************************/ #include <stdio.h> #include <string.h> #include <math.h> #define SIGN(a, b) ( (b) < 0 ? -fabs(a) : fabs(a) ) main(argc, argv) int argc; char *argv[]; { FILE *stream; int n, m, i, j, k, k2; float **data, **matrix(), **symmat, **symmat2, *vector(), *evals, *interm; void free_matrix(), free_vector(), corcol(), covcol(), scpcol(); void tred2(), tqli(); float in_value; char option, *strncpy(); /********************************************************************* Get from command line: input data file name, #rows, #cols, option. Open input file: fopen opens the file whose name is stored in the pointer argv[argc-1]; if unsuccessful, error message is printed to stderr. *********************************************************************/ if (argc != 5) { printf("Syntax help: PCA filename #rows #cols option\n\n"); printf("(filename -- give full path name,\n"); printf(" #rows \n"); printf(" #cols -- integer values,\n"); printf(" option -- R (recommended) for correlation analysis,\n"); printf(" V for variance/covariance analysis\n"); printf(" S for SSCP analysis.)\n"); exit(1); } n = atoi(argv[2]); /* # rows */ m = atoi(argv[3]); /* # columns */ strncpy(&option,argv[4],1); /* Analysis option */ printf("No. of rows: %d, no. of columns: %d.\n",n,m); printf("Input file: %s.\n",argv[1]); if ((stream = fopen(argv[1],"r")) == NULL) { fprintf(stderr, "Program %s : cannot open file %s\n", argv[0], argv[1]); fprintf(stderr, "Exiting to system."); exit(1); /* Note: in versions of DOS prior to 3.0, argv[0] contains the string "C". */ } /* Now read in data. */ data = matrix(n, m); /* Storage allocation for input data */ for (i = 1; i <= n; i++) { for (j = 1; j <= m; j++) { fscanf(stream, "%f", &in_value); data[i][j] = in_value; } } /* Check on (part of) input data. for (i = 1; i <= 18; i++) {for (j = 1; j <= 8; j++) { printf("%7.1f", data[i][j]); } printf("\n"); } */ symmat = matrix(m, m); /* Allocation of correlation (etc.) matrix */ /* Look at analysis option; branch in accordance with this. */ switch(option) { case 'R': case 'r': printf("Analysis of correlations chosen.\n"); corcol(data, n, m, symmat); /* Output correlation matrix. for (i = 1; i <= m; i++) { for (j = 1; j <= 8; j++) { printf("%7.4f", symmat[i][j]); } printf("\n"); } */ break; case 'V': case 'v': printf("Analysis of variances-covariances chosen.\n"); covcol(data, n, m, symmat); /* Output variance-covariance matrix. for (i = 1; i <= m; i++) { for (j = 1; j <= 8; j++) { printf("%7.1f", symmat[i][j]); } printf("\n"); } */ break; case 'S': case 's': printf("Analysis of sums-of-squares-cross-products"); printf(" matrix chosen.\n"); scpcol(data, n, m, symmat); /* Output SSCP matrix. for (i = 1; i <= m; i++) { for (j = 1; j <= 8; j++) { printf("%7.1f", symmat[i][j]); } printf("\n"); } */ break; default: printf("Option: %s\n",option); printf("For option, please type R, V, or S\n"); printf("(upper or lower case).\n"); printf("Exiting to system.\n"); exit(1); break; } /********************************************************************* Eigen-reduction **********************************************************************/ /* Allocate storage for dummy and new vectors. */ evals = vector(m); /* Storage alloc. for vector of eigenvalues */ interm = vector(m); /* Storage alloc. for 'intermediate' vector */ symmat2 = matrix(m, m); /* Duplicate of correlation (etc.) matrix */ for (i = 1; i <= m; i++) { for (j = 1; j <= m; j++) { symmat2[i][j] = symmat[i][j]; /* Needed below for col. projections */ } } tred2(symmat, m, evals, interm); /* Triangular decomposition */ tqli(evals, interm, m, symmat); /* Reduction of sym. trid. matrix */ /* evals now contains the eigenvalues, columns of symmat now contain the associated eigenvectors. */ printf("\nEigenvalues:\n"); for (j = m; j >= 1; j--) { printf("%18.5f\n", evals[j]); } printf("\n(Eigenvalues should be strictly positive; limited\n"); printf("precision machine arithmetic may affect this.\n"); printf("Eigenvalues are often expressed as cumulative\n"); printf("percentages, representing the 'percentage variance\n"); printf("explained' by the associated axis or principal component.)\n"); printf("\nEigenvectors:\n"); printf("(First three; their definition in terms of original vbes.)\n"); for (j = 1; j <= m; j++) { for (i = 1; i <= 3; i++) { printf("%12.4f", symmat[j][m-i+1]); } printf("\n"); } /* Form projections of row-points on first three prin. components. */ /* Store in 'data', overwriting original data. */ for (i = 1; i <= n; i++) { for (j = 1; j <= m; j++) { interm[j] = data[i][j]; } /* data[i][j] will be overwritten */ for (k = 1; k <= 3; k++) { data[i][k] = 0.0; for (k2 = 1; k2 <= m; k2++) { data[i][k] += interm[k2] * symmat[k2][m-k+1]; } } } printf("\nProjections of row-points on first 3 prin. comps.:\n"); for (i = 1; i <= n; i++) { for (j = 1; j <= 3; j++) { printf("%12.4f", data[i][j]); } printf("\n"); } /* Form projections of col.-points on first three prin. components. */ /* Store in 'symmat2', overwriting what was stored in this. */ for (j = 1; j <= m; j++) { for (k = 1; k <= m; k++) { interm[k] = symmat2[j][k]; } /*symmat2[j][k] will be overwritten*/ for (i = 1; i <= 3; i++) { symmat2[j][i] = 0.0; for (k2 = 1; k2 <= m; k2++) { symmat2[j][i] += interm[k2] * symmat[k2][m-i+1]; } if (evals[m-i+1] > 0.0005) /* Guard against zero eigenvalue */ symmat2[j][i] /= sqrt(evals[m-i+1]); /* Rescale */ else symmat2[j][i] = 0.0; /* Standard kludge */ } } printf("\nProjections of column-points on first 3 prin. comps.:\n"); for (j = 1; j <= m; j++) { for (k = 1; k <= 3; k++) { printf("%12.4f", symmat2[j][k]); } printf("\n"); } free_matrix(data, n, m); free_matrix(symmat, m, m); free_matrix(symmat2, m, m); free_vector(evals, m); free_vector(interm, m); } /** Correlation matrix: creation ***********************************/ void corcol(data, n, m, symmat) float **data, **symmat; int n, m; /* Create m * m correlation matrix from given n * m data matrix. */ { float eps = 0.005; float x, *mean, *stddev, *vector(); int i, j, j1, j2; /* Allocate storage for mean and std. dev. vectors */ mean = vector(m); stddev = vector(m); /* Determine mean of column vectors of input data matrix */ for (j = 1; j <= m; j++) { mean[j] = 0.0; for (i = 1; i <= n; i++) { mean[j] += data[i][j]; } mean[j] /= (float)n; } printf("\nMeans of column vectors:\n"); for (j = 1; j <= m; j++) { printf("%7.1f",mean[j]); } printf("\n"); /* Determine standard deviations of column vectors of data matrix. */ for (j = 1; j <= m; j++) { stddev[j] = 0.0; for (i = 1; i <= n; i++) { stddev[j] += ( ( data[i][j] - mean[j] ) * ( data[i][j] - mean[j] ) ); } stddev[j] /= (float)n; stddev[j] = sqrt(stddev[j]); /* The following in an inelegant but usual way to handle near-zero std. dev. values, which below would cause a zero- divide. */ if (stddev[j] <= eps) stddev[j] = 1.0; } printf("\nStandard deviations of columns:\n"); for (j = 1; j <= m; j++) { printf("%7.1f", stddev[j]); } printf("\n"); /* Center and reduce the column vectors. */ for (i = 1; i <= n; i++) { for (j = 1; j <= m; j++) { data[i][j] -= mean[j]; x = sqrt((float)n); x *= stddev[j]; data[i][j] /= x; } } /* Calculate the m * m correlation matrix. */ for (j1 = 1; j1 <= m-1; j1++) { symmat[j1][j1] = 1.0; for (j2 = j1+1; j2 <= m; j2++) { symmat[j1][j2] = 0.0; for (i = 1; i <= n; i++) { symmat[j1][j2] += ( data[i][j1] * data[i][j2]); } symmat[j2][j1] = symmat[j1][j2]; } } symmat[m][m] = 1.0; return; } /** Variance-covariance matrix: creation *****************************/ void covcol(data, n, m, symmat) float **data, **symmat; int n, m; /* Create m * m covariance matrix from given n * m data matrix. */ { float *mean, *vector(); int i, j, j1, j2; /* Allocate storage for mean vector */ mean = vector(m); /* Determine mean of column vectors of input data matrix */ for (j = 1; j <= m; j++) { mean[j] = 0.0; for (i = 1; i <= n; i++) { mean[j] += data[i][j]; } mean[j] /= (float)n; } printf("\nMeans of column vectors:\n"); for (j = 1; j <= m; j++) { printf("%7.1f",mean[j]); } printf("\n"); /* Center the column vectors. */ for (i = 1; i <= n; i++) { for (j = 1; j <= m; j++) { data[i][j] -= mean[j]; } } /* Calculate the m * m covariance matrix. */ for (j1 = 1; j1 <= m; j1++) { for (j2 = j1; j2 <= m; j2++) { symmat[j1][j2] = 0.0; for (i = 1; i <= n; i++) { symmat[j1][j2] += data[i][j1] * data[i][j2]; } symmat[j2][j1] = symmat[j1][j2]; } } return; } /** Sums-of-squares-and-cross-products matrix: creation **************/ void scpcol(data, n, m, symmat) float **data, **symmat; int n, m; /* Create m * m sums-of-cross-products matrix from n * m data matrix. */ { int i, j1, j2; /* Calculate the m * m sums-of-squares-and-cross-products matrix. */ for (j1 = 1; j1 <= m; j1++) { for (j2 = j1; j2 <= m; j2++) { symmat[j1][j2] = 0.0; for (i = 1; i <= n; i++) { symmat[j1][j2] += data[i][j1] * data[i][j2]; } symmat[j2][j1] = symmat[j1][j2]; } } return; } /** Error handler **************************************************/ void erhand(err_msg) char err_msg[]; /* Error handler */ { fprintf(stderr,"Run-time error:\n"); fprintf(stderr,"%s\n", err_msg); fprintf(stderr,"Exiting to system.\n"); exit(1); } /** Allocation of vector storage ***********************************/ float *vector(n) int n; /* Allocates a float vector with range [1..n]. */ { float *v; v = (float *) malloc ((unsigned) n*sizeof(float)); if (!v) erhand("Allocation failure in vector()."); return v-1; } /** Allocation of float matrix storage *****************************/ float **matrix(n,m) int n, m; /* Allocate a float matrix with range [1..n][1..m]. */ { int i; float **mat; /* Allocate pointers to rows. */ mat = (float **) malloc((unsigned) (n)*sizeof(float*)); if (!mat) erhand("Allocation failure 1 in matrix()."); mat -= 1; /* Allocate rows and set pointers to them. */ for (i = 1; i <= n; i++) { mat[i] = (float *) malloc((unsigned) (m)*sizeof(float)); if (!mat[i]) erhand("Allocation failure 2 in matrix()."); mat[i] -= 1; } /* Return pointer to array of pointers to rows. */ return mat; } /** Deallocate vector storage *********************************/ void free_vector(v,n) float *v; int n; /* Free a float vector allocated by vector(). */ { free((char*) (v+1)); } /** Deallocate float matrix storage ***************************/ void free_matrix(mat,n,m) float **mat; int n, m; /* Free a float matrix allocated by matrix(). */ { int i; for (i = n; i >= 1; i--) { free ((char*) (mat[i]+1)); } free ((char*) (mat+1)); } /** Reduce a real, symmetric matrix to a symmetric, tridiag. matrix. */ void tred2(a, n, d, e) float **a, *d, *e; /* float **a, d[], e[]; */ int n; /* Householder reduction of matrix a to tridiagonal form. Algorithm: Martin et al., Num. Math. 11, 181-195, 1968. Ref: Smith et al., Matrix Eigensystem Routines -- EISPACK Guide Springer-Verlag, 1976, pp. 489-494. W H Press et al., Numerical Recipes in C, Cambridge U P, 1988, pp. 373-374. */ { int l, k, j, i; float scale, hh, h, g, f; for (i = n; i >= 2; i--) { l = i - 1; h = scale = 0.0; if (l > 1) { for (k = 1; k <= l; k++) scale += fabs(a[i][k]); if (scale == 0.0) e[i] = a[i][l]; else { for (k = 1; k <= l; k++) { a[i][k] /= scale; h += a[i][k] * a[i][k]; } f = a[i][l]; g = f>0 ? -sqrt(h) : sqrt(h); e[i] = scale * g; h -= f * g; a[i][l] = f - g; f = 0.0; for (j = 1; j <= l; j++) { a[j][i] = a[i][j]/h; g = 0.0; for (k = 1; k <= j; k++) g += a[j][k] * a[i][k]; for (k = j+1; k <= l; k++) g += a[k][j] * a[i][k]; e[j] = g / h; f += e[j] * a[i][j]; } hh = f / (h + h); for (j = 1; j <= l; j++) { f = a[i][j]; e[j] = g = e[j] - hh * f; for (k = 1; k <= j; k++) a[j][k] -= (f * e[k] + g * a[i][k]); } } } else e[i] = a[i][l]; d[i] = h; } d[1] = 0.0; e[1] = 0.0; for (i = 1; i <= n; i++) { l = i - 1; if (d[i]) { for (j = 1; j <= l; j++) { g = 0.0; for (k = 1; k <= l; k++) g += a[i][k] * a[k][j]; for (k = 1; k <= l; k++) a[k][j] -= g * a[k][i]; } } d[i] = a[i][i]; a[i][i] = 1.0; for (j = 1; j <= l; j++) a[j][i] = a[i][j] = 0.0; } } /** Tridiagonal QL algorithm -- Implicit **********************/ void tqli(d, e, n, z) float d[], e[], **z; int n; { int m, l, iter, i, k; float s, r, p, g, f, dd, c, b; void erhand(); for (i = 2; i <= n; i++) e[i-1] = e[i]; e[n] = 0.0; for (l = 1; l <= n; l++) { iter = 0; do { for (m = l; m <= n-1; m++) { dd = fabs(d[m]) + fabs(d[m+1]); if (fabs(e[m]) + dd == dd) break; } if (m != l) { if (iter++ == 30) erhand("No convergence in TLQI."); g = (d[l+1] - d[l]) / (2.0 * e[l]); r = sqrt((g * g) + 1.0); g = d[m] - d[l] + e[l] / (g + SIGN(r, g)); s = c = 1.0; p = 0.0; for (i = m-1; i >= l; i--) { f = s * e[i]; b = c * e[i]; if (fabs(f) >= fabs(g)) { c = g / f; r = sqrt((c * c) + 1.0); e[i+1] = f * r; c *= (s = 1.0/r); } else { s = f / g; r = sqrt((s * s) + 1.0); e[i+1] = g * r; s *= (c = 1.0/r); } g = d[i+1] - p; r = (d[i] - g) * s + 2.0 * c * b; p = s * r; d[i+1] = g + p; g = c * r - b; for (k = 1; k <= n; k++) { f = z[k][i+1]; z[k][i+1] = s * z[k][i] + c * f; z[k][i] = c * z[k][i] - s * f; } } d[l] = d[l] - p; e[l] = g; e[m] = 0.0; } } while (m != l); } } C*************************************************************************** 3.0 3.0 3.0 3.0 3.0 3.0 35.0 45.0 53.0 55.0 58.0 113.0 113.0 86.0 67.0 90.0 3.5 3.5 4.0 4.0 4.5 4.5 46.0 59.0 63.0 58.0 58.0 125.0 126.0 110.0 78.0 97.0 4.0 4.0 4.5 4.5 5.0 5.0 48.0 60.0 68.0 65.0 65.0 123.0 123.0 117.0 87.0 108.0 5.0 5.0 5.0 5.5 5.5 5.5 46.0 63.0 70.0 64.0 63.0 116.0 119.0 115.0 97.0 112.0 6.0 6.0 6.0 6.0 6.5 6.5 51.0 69.0 77.0 70.0 71.0 120.0 122.0 122.0 96.0 123.0 11.0 11.0 11.0 11.0 11.0 11.0 64.0 75.0 81.0 79.0 79.0 112.0 114.0 113.0 98.0 115.0 20.0 20.0 20.0 20.0 20.0 20.0 76.0 86.0 93.0 92.0 91.0 104.0 104.5 107.0 97.5 104.0 30.0 30.0 30.0 30.0 30.1 30.2 84.0 96.0 98.0 99.0 96.0 101.0 102.0 99.0 94.0 99.0 30.0 33.4 36.8 40.0 43.0 45.6 100.0 106.0 106.0 108.0 101.0 99.0 98.0 99.0 95.0 95.0 42.0 44.0 46.0 48.0 50.0 51.0 109.0 111.0 110.0 110.0 103.0 95.5 95.5 95.0 92.5 92.0 60.0 61.7 63.5 65.5 67.3 69.2 122.0 124.0 124.0 121.0 103.0 93.2 92.5 92.2 90.0 90.8 70.0 70.1 70.2 70.3 70.4 70.5 137.0 132.0 134.0 128.0 101.0 91.7 90.2 88.8 87.3 85.8 78.0 77.6 77.2 76.8 76.4 76.0 167.0 159.0 152.0 144.0 103.0 89.8 87.7 85.7 83.7 81.8 98.9 97.8 96.7 95.5 94.3 93.2 183.0 172.0 162.0 152.0 102.0 87.5 85.3 83.3 81.3 79.3 160.0 157.0 155.0 152.0 149.0 147.0 186.0 175.0 165.0 156.0 120.0 87.0 84.9 82.8 80.8 79.0 272.0 266.0 260.0 254.0 248.0 242.0 192.0 182.0 170.0 159.0 131.0 88.0 85.8 83.7 81.6 79.6 382.0 372.0 362.0 352.0 343.0 333.0 205.0 192.0 178.0 166.0 138.0 86.2 84.0 82.0 79.8 77.5 770.0 740.0 710.0 680.0 650.0 618.0 226.0 207.0 195.0 180.0 160.0 82.9 80.2 77.7 75.2 72.7 C***************************************************************************