1451: Semiconnected
时间限制: 1 Sec 内存限制: 32 MB
提交: 79 解决: 20
题目描述
For a directed graph G = (V, E), if for all pairs of nodes u,v, u can always reach v or v can always reach u , then we call this a Semiconnected graph. Now you are given a directed
graph, you should tell us whether it is a Semiconnected graph. If it is, output “yes”, or else“no”.
输入
There are several test cases, for each test case, there are two integers in the first line, n and m n(n<=10000) ,m(m<=50000) , means that there are n nodes and m edges in this graph.
The nodes are numbered from 1 to n. Then m lines each with two integers u and v means there is an edge from u to v.
输出
For each test case, output “yes” if it is a Semiconnected graph, or else “no” instead.
样例输入
4 3
1 2
2 3
3 4
4 3
1 2
2 3
4 3
样例输出
yes
no
题意:给你一个有向图,若从图中任意两个点u,v。都有从u到v的路径,或者从v到u的路径,则该图为半连通的,是则输出yes,不是则输出no
思路:若该图符合以上情况,
1:入度为0的点多于一个,不符合。
2:对该图进行缩点后,若为半连通图,则当前的图为一条直线,统计新图中入度,出度为0的点是不是都只有一个即可。
代码如下:
#include "stdio.h" //强连通缩点后,判断新图中入度为0,出度为0的点是否都只有一个
#include "string.h"
#include "vector"
#include "stack"
using namespace std; #define N 10005
#define M 50005 struct node
{
int x,y;
int next;
}edge[M];
int idx,head[N];
void Init(){ idx=0; memset(head,-1,sizeof(head)); }
void Add(int x,int y)
{
edge[idx].x=x; edge[idx].y=y;
edge[idx].next=head[x]; head[x]=idx++;
} int n;
int dfs_clock;
bool mark[N];
int scc_cnt;
int belong[N];
stack<int> q;
int num[N];
int low[N],dfn[N];
int MIN(int a,int b) { return a<b?a:b; } void DFS(int x)
{
int i,y;
q.push(x);
mark[x] = true;
low[x] = dfn[x] = ++dfs_clock;
for(i=head[x]; i!=-1; i=edge[i].next)
{
y=edge[i].y;
if(!dfn[y])
{
DFS(y);
low[x] = MIN(low[x],low[y]);
}
else if(mark[y])
low[x] = MIN(dfn[y],low[x]);
}
if(low[x]==dfn[x])
{
int temp;
scc_cnt++;
while(1)
{
temp = q.top();
q.pop();
belong[temp] = scc_cnt;
num[scc_cnt]++;
mark[temp] = false;
if(temp==x) break;
}
}
} int ru_du[N],chu_du[N]; void Solve(int id)
{
int i;
int x,y;
dfs_clock = scc_cnt = 0;
memset(dfn,0,sizeof(dfn));
memset(num,0,sizeof(num));
memset(belong,0,sizeof(belong));
memset(mark,false,sizeof(mark));
DFS(id);
for(i=1; i<=n; ++i)
{
if(!dfn[i])
DFS(i);
}
memset(ru_du,0,sizeof(ru_du));
memset(chu_du,0,sizeof(chu_du));
for(i=0; i<idx; ++i)
{
x = edge[i].x;
y = edge[i].y;
if(belong[x]!=belong[y])
{
chu_du[belong[x]]++;
ru_du[belong[y]]++;
}
}
int ru_0=0;
int chu_0=0;
for(i=1; i<=scc_cnt; ++i)
{
if(ru_du[i]==0)
ru_0++;
if(chu_du[i]==0)
chu_0++;
}
if(ru_0==1 && chu_0==1)
printf("yes\n");
else
printf("no\n");
} int ru[N],chu[N]; int main()
{
int i,m;
int x,y;
while(scanf("%d%d",&n,&m)!=EOF)
{
Init();
memset(ru,0,sizeof(ru));
memset(chu,0,sizeof(chu));
while(m--)
{
scanf("%d%d",&x,&y);
Add(x,y);
chu[x]++;
ru[y]++;
}
int ans=0,id=1;
for(i=1; i<=n; ++i)
{
if(ru[i]==0)
{
ans++;
id=i;
}
}
if(ans>1) { printf("no\n"); continue; }
Solve(id);
}
return 0;
}