I have a dataframe and I am looking to calculate the mean based on store and all stores. I created code to calculate the mean but I am looking for a way that is more efficient.
我有一个数据框,我希望根据商店和所有商店计算平均值。我创建了计算平均值的代码,但我正在寻找一种更有效的方法。
DF
Cashier# Store# Sales Refunds
001 001 100 1
002 001 150 2
003 001 200 2
004 002 400 1
005 002 600 4
DF-Desired
Cashier# Store# Sales Refunds Sales_StoreAvg Sales_All_Stores_Avg
001 001 100 1 150 290
002 001 150 2 150 290
003 001 200 2 150 290
004 002 400 1 500 290
005 002 600 4 500 290
My Attempt I created two additional dataframes then did a left join
我的尝试我创建了两个额外的数据帧,然后进行了左连接
df.groupby(['Store#']).sum().reset_index().groupby('Sales').mean()
2 个解决方案
#1
2
I think need GroupBy.transform
for new column filled by aggregate values with mean
:
我认为需要GroupBy.transform为由聚合值填充的新列使用mean:
df['Sales_StoreAvg'] = df.groupby('Store#')['Sales'].transform('mean')
df['Sales_All_Stores_Avg'] = df['Sales'].mean()
print (df)
Cashier# Store# Sales Refunds Sales_StoreAvg Sales_All_Stores_Avg
0 1 1 100 1 150 290.0
1 2 1 150 2 150 290.0
2 3 1 200 2 150 290.0
3 4 2 400 1 500 290.0
4 5 2 600 4 500 290.0
#2
1
Use this, with transform
and assign
:
使用此,使用转换和分配:
df.assign(Sales_StoreAvg = df.groupby('Store#')['Sales'].transform('mean'),
Sales_All_Stores_Avg = df['Sales'].mean()).astype(int)
Output:
Cashier# Store# Sales Refunds Sales_All_Stores_Avg Sales_StoreAvg
0 1 1 100 1 290 150
1 2 1 150 2 290 150
2 3 1 200 2 290 150
3 4 2 400 1 290 500
4 5 2 600 4 290 500
#1
2
I think need GroupBy.transform
for new column filled by aggregate values with mean
:
我认为需要GroupBy.transform为由聚合值填充的新列使用mean:
df['Sales_StoreAvg'] = df.groupby('Store#')['Sales'].transform('mean')
df['Sales_All_Stores_Avg'] = df['Sales'].mean()
print (df)
Cashier# Store# Sales Refunds Sales_StoreAvg Sales_All_Stores_Avg
0 1 1 100 1 150 290.0
1 2 1 150 2 150 290.0
2 3 1 200 2 150 290.0
3 4 2 400 1 500 290.0
4 5 2 600 4 500 290.0
#2
1
Use this, with transform
and assign
:
使用此,使用转换和分配:
df.assign(Sales_StoreAvg = df.groupby('Store#')['Sales'].transform('mean'),
Sales_All_Stores_Avg = df['Sales'].mean()).astype(int)
Output:
Cashier# Store# Sales Refunds Sales_All_Stores_Avg Sales_StoreAvg
0 1 1 100 1 290 150
1 2 1 150 2 290 150
2 3 1 200 2 290 150
3 4 2 400 1 290 500
4 5 2 600 4 290 500